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Introduction. Current chemotherapy of breast cancer has a wide range of disadvantages, in particular, the development
of therapy-related infections and hormonal imbalance. Combination of main cytostatic with glucocorticoids allows
to broaden its therapeutic interval and to decrease the total toxicity of the treatment. However, long-term treatment
with glucocorticoids leads to the development of severe side effects via activation of multiple molecular mechanisms.
Thus, glucocorticoids activate prosurvival mTOR-dependent autophagy. Therefore, the evaluation of PI3K (phosphoino-
sitide 3-kinases) / Akt (protein kinase B) / mTOR (mammalian target of rapamycin) inhibitors as adjuvants for breast
cancer therapy is important for optimization of treatment protocol.

Aim. Analysis of the effects of PI3K/Akt/mTOR inhibitors, rapamycin, wortmannin and LY-294002 in combination with
glucocorticoids in breast cancer cell lines of different subtypes.

Materials and methods. We demonstrated the inhibition of PI3K/Akt/mTOR signaling and the autophagy induction
after the treatment of breast cancer cells with rapamycin, wortmannin and LY-294002 by Western blotting analysis
of Beclin-1, phospho-Beclin-1 (Ser93 and Ser30).

Conclusion. PI3K/Akt/mTOR inhibitors in combination with Dexamethasone cooperatively inhibited mTOR signaling and
activated autophagy in breast cancer cells in vitro.
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nases, protein kinase B
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AkTuBauua aytocharmm B KneTKax paka MoONIOYHOM Kenesbl in vitro nocne BO3feUCTBUA
uHruéuropamm PI3K/AKT/mTOR

1. Ipuzopvesa’,

E.A. Jlecosaa®’

E.M. 2Kuoxoea’, E.C. Jlotaoea’, A.J]. Enuxees’, K.H. Kupcanoe"?, I A. beauuxui’, M.I. Sxybosckas’,

'PI'BY « Hayuonanvhbwiii MeOuyunckuil ucciedosamenvckuil yenmp onwxonoeuu um. H. H. Baoxuna» Munsdpasa Poccuu; Poccus, 115522
Mockea, Kawupckoe wocce, 24,

2OIAOY BO «Poccuiickuii yHusepcumem opyxcovl Hapodoe»,; Poccus, 117198 Mocksa, ya. Mukayxo-Makaas, 6;

SPI'BOY BO «Pazanckuii 2ocydapcmeentblil meduyunckuil yrueepcumem um. M. I1. Iaerosea» Munsdpasa Poccuu; Poccus, 390026
Psazanw, ya. Bvicokosorvmuas, 9

KoHTaKThbI:

[vana OmutpuesHa lpuropbesa grigodidmit@gmail.com

BBepeHue. XumuoTepanus paka MONOYHOW Xene3bl UMEeT WUPOKUIA CNEKTP HE0CTAaTKOB, B YaCTHOCTU pa3BUTUE COMYT-
CTBYIOLMX UHDEKLNIA U TOPMOHANbHBIX HapyweHuid. KOMOUHALMA C CUHTETUYECKUMU TNIOKOKOPTUKOMUAAMU NO3BONAET
paclmpuTb TepaneBTUYECKUI  MHTEPBAN U CHU3UTL 0BLLYIO TOKCUYHOCTL NPEnapaToB OCHOBHOM NMHUM Tepanuun. OgHako
ANUTEeNbHOE NPUMEHEHME MMIOKOKOPTUKOUA0B CNOCOGCTBYET pa3BuTHIO psfia NoboUHbIX I HeEKTOB, KOTOPbIE MOTYT peanu-
30BbIBATbCA 33 CYET PA3NNYHBIX MONEKYNAPHLIX MEXaHWU3MOB. TaK, MIOKOKOPTUKOUALI MOTYT UHWULMMPOBATL MHAYKLMIO
ayTotaruu, BeAyly K BbIXXMBAHMUIO OMYyXOJEBbIX KNETOK. 3anyck MexaHusma aytocdaruu ssnserca mTOR-3aBuCUMbIM,
B CBA3M C YEM aKTyaNlbHOW ABNAETCA OLEHKA BO3MOXKHOCTM BBEAEHUSA B Ka4eCTBe afibloBaHTOB B TEPanuio paka MoNoYHOM
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Xenesbl MHTMOUTOPOB curHanbHoro nytu PI3K (docdonHosntua-3-kuHasa)/Akt (npoteutkunasa B)/mTOR (MuweHb
panamMuLMHa MAeKONUTaIOILMX).

Llenb pa6oTbl — aHanu3 aeiicteua uHrnoutopos PI3K/Akt/mTOR panamuumHa, BopTMaHHMHa 1 LY-294002 B KOMOGMHALMM
C MMIOKOKOPTUKOMAAMN Ha 3anycK ayTodarum B KNETOYHBIX TMHUAX PaKka MONIOYHOM JKene3bl Pa3fIMyHOro rucToreHesa.
Matepuanbl n metopbl. MeTosiom BecTepH-610TTUHIa 6bIN0 NOKa3aHO, YTO panamMuLIMH, BOPTMAHHUH 1 LY-294002 uHru-
OMpYIOT aKTUBHOCTL curHanbHoro nyt PI3K/Akt/mTOR u uHAyUMpPYIOT ayTodarmio B KNETKAaxX paka MOJIOYHON JKenessl,
0 YeM CYAMIU MO MOBLILEHUIO YPOBHA KNtoueBoro Genka makpoaytodaruu, Beclin-1, u ero pocchopunmpoaHHbix Gopm
phospho-Beclin-1 no octatkam ceputa Ser93 u Ser30.

3aknioyeHue. B xone paboTbl ObIN0 NOKA3aHO, YTO UHTUOUTOPLI CUTHaNbHOro nyTu PI3K/Akt/mTOR B KOM6UHaLUM C AeK-
CaMeTa3oHOM KOONepaTUBHO NOAABAAT CUrHaNbHbI nyTb MTOR v akTMBUpYIOT ayTodaruto B knetkax PMX in vitro.

KnioyeBble cnoBa: pak MonoyHoi xenesbl, aytrodarns, MIOKOKOPTUKOUA, MULLIEHb PanaMuLUHa MAEKoNUTaloWuX, pana-
MULMH, BOPTMaHHWH, LY-294002, poconHO3nTUA-3-KNHA3a, NPOTeNHKNHA3a B

Ana uutnposaHua: puropsesa [.[., ugkosa E.M., Jibinosa E.C. u gp. AKTUBaLMA ayTodarum B KneTKax paka MOJOYHOW
)enessbl in vitro nocne so3pencTaus uHrn6utopamu PI3K/AKT/mTOR. Ycnexu monekynsapHoii oHkonoruu 2022;9(4):61-70.

DOI: 10.17650/2313-805X-2022-9-4-61-70. (Ha aHrn.).

INTRODUCTION

Incidence of breast cancer (BC) in 2020 is about
2.26 million new cases. It is the first common cancer ac-
counting for approximately 12 % of all cancer worldwide [1].
Breast cancer subtypes are characterized by high hetero-
geneity in histogenesis, genetic abnormalities, clinical pro-
gression of disease and prognosis. Molecular classification
of BC is based on the presence/absence of the expression
of estrogen and progesterone receptors (ER, PR) as well as
epidermal growth factor 2 (HER2). Hormone-dependent
BC, characterized by the ER, PR and HER2 expression, is
well curable [2]. The treatment usually includes ER antag-
onists and selective modulators tamoxifen, raloxifen and
some others. Long-term therapy course requires the com-
bination of the main anti-cancer drug with glucocorticoids
(GC) [3]. ER-negative BC subdivides to triple negative BC
(TNBC) and HER2-positive BC. There BC subtypes are
associated with poor prognosis compared to luminal BC.
HER?2 amplification and hyperexpression in BC allows
to apply targeted anti-HER?2 therapy with the high efficacy
[4, 5]. Triple negative BC accounts for 15 % of all BC cases
and is characterized by higher aggressiveness and the per-
centage of relapses as well as poor prognosis. Triple negative
BC treatment is the combination of surgery, radio- and
chemotherapy with platina derivatives, paclitaxel and doxo-
rubicin.

Therefore, therapy of hormone-resistant BC consists
of cytostatic drugs associated with high systemic toxicity
and severe adverse effects. Also modern BC treatment is
characterized by the fast development of drug resistance.

Long-term treatment of BC includes GC. Their appli-
cation allows to broaden the therapeutic range of main cy-
tostatic drug, to diminish its side effects: nausea, vomits,
inflammation [6—10]. Glucocorticoids also reveal antipro-
liferative effects on the cancer cells of various subtypes
[6—10]. Synthetic GC are usually used in the therapy of so-
lid tumors including BC because of immunosuppressive,
anti-inflammatory and anti-vomiting effects as well as an-
ti-proliferative action on cancer cells [6—10]. However,
chronic treatment with GC lead to the different metabolic

complications associated with the induction of the expres-
sion of a number GC-dependent genes: REDDI [11, 12],
FKBP51 [13], KLF5 [14], SGK1 [15], MKP-1 [16, 17],
RORI1 18], YAP [19] and others. Additionaly to direct re-
gulation of gene expression by glucocorticoid receptor
(GR) binding with GR-responsive elements in gene pro-
motors and enhancers, GR could also regulate cell viabili-
ty by the protein-protein interaction with key molecules
of pro-proliferative and anti-apoptotic signaling pathways.
Thus, GR suppresses the activity of NF-kB (nuclear factor
kappa-light-chain-enhancer of activated B cells), AP-1,
Wnt, mTORC (mammalian target of rapamycin) [20—22].
In our previous studies we demonstrated the efficacy of the
combined application of GC and PI3K (phosphoinositide
3-kinases)/Akt (protein kinase B)/mTOR modulators with
the ability to inhibit the expression of GC-dependent gene
REDD], to attenuate the viability of leukemia and lympho-
ma cells [7, 23, 24]. Moreover, we showed that side effects
of GC are realized via multiple mechanisms including pro-
survival autophagy activation [25].

Autophagy is the cell process of catabolism of cytoplas-
mic macromolecules and organelles. Autophagy is divided
to macroautophagy associated with the autophagosome
assemble and degradation of organelles and genetic mate-
rial, microautophagy, which is realized via endosome and
lysosome formation, and shaperon-related autophagy as-
sociated with the activation of heat shock proteins [26].
Macroautophagy induction promotes the shifts in the ex-
pression of oncogenes and tumor suppressor genes, the
elimination of damaged organelles and the decrease
of chromosomal instability [26, 27]. At the same time mac-
roautophagy leads to cell death in tumors associated with
the resistance to apoptosis induction [26—32]. Macroauto-
phagy is activated in cells in conditions of hypoxia, stress
and nutrient deficiency [26], and allows cells to resist the
metabolic stress and the loss of sensitivity to treatment [28].
Autophagy activation is regulated by PI3K/Akt/mTOR
signaling [29, 30] via the activation of Beclin-1, key com-
ponent of PI3K IIT complex [31, 32]. It was demonstrated
that Beclin-1 expression in BC cell line MCF-7 is lower
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compared to the normal cells [33]. Along with this obser-
vation, Beclin-1 stimulation leads to the induction of au-
tophagy, inhibition of proliferation in vitro and suppression
of malignant transformation in xenograft model in vivo
[33]. Mice with the loss of heterozygosity of BECN1 gene
demonstrated higher frequency of spontanic tumor deve-
lopment [14, 34, 35]. Low BECN1 expression in HER2-po-
sitive BC is associated with HER2 amplification and poor
prognosis [36].

Role of autophagy in the pathogenesis of BC is com-
plicated due to difficulties in separation of microautophagy
from macroautophagy in different tumors and in evaluation
of the contribution of both processes in cell death and sur-
vival. Glucocorticoid-dependent autophagy via increase
in REDDI1 (regulated in development and DNA damage
response 1) and FKBP51 expression was demonstrated
in non-transformed cells of epidermis [12] and muscle [37].
It is known that GC-dependent kinase SGK1 (serum and
glucocorticoid-inducible kinase 1) affects the activation
of autophagy via PI3K/Akt/mTOR signaling [15]. Up-regu-
lation of SGKI1 is detected in many tumors including BC
and is associated with metastasis and chemoresistance [15,
38, 39]. As GC-induced autophagy belongs to prosurvival
autophagy type, we propose that GC induce microauto-
phagy associated with the development of the drug resist-
ance. Thus, GC activate the prosurvival autophagy in glio-
ma and blood cancer cells [25, 40—42]. At the same time,
the treatment of cancer cells with the combination of GC
with PI3K inhibitors 3-methyladenine and chloroquine
leads to the apoptosis induction [40].

Role of the autophagy in GC-induced resistance
to chemotherapeutics remains unclear. Phosphoinositide
3-kinases inhibitors 3-methyladenine and hydroxychloro-
quine restore the sensitivity of lapatinib-resistance
HER2-positive BC to lapatinib in vitro [43], PI3K inhibitor
LY-294002 decrease the ER-related resistance of ovarian
cancer to paclitaxel [44], and rapamycin (Rapa) restore the
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sensitivity of the cancer cells of various subtypes to chemo-
therapeutics [45—47]. Based of these data we assume that
targeted regulation of autophagy by PI3K/Akt/mTOR in-
hibitors is promising for the optimization of GC-based
combined BC therapy (fig. 1) [48, 49].

Therefore, targeted regulation of autophagy could be
the option to restore the sensitivity of cancer cells to chemo-
therapeutics. The application of PI3K/Akt/mTOR inhi-
bitors in combined anti-cancer therapy is promising for
autophagy induction [48, 49].

The aim of the study — the present study is devoted
to evaluation of autophagy activation by PI3K/Akt/mTOR
modulators rapamycin (Rapa), wortmannin (WM) and
LY-294002 (LY) individually and in combination with Dexa-
methasone (Dex) in BC cells.

MATERIALS AND METHODS

Cell cultures. Breast cancer cells were cultured in DMEM
(MCF-7 and MDA-MB-231 cell lines) or RPMI-1640
(HCC-1954 cell line) with 10 % fetal embryonic serum,
penicillin (50 ME/ml) and streptomycin (50 ME/ml)
(“Paneco”, Russia) at 37 °C and 5 % CO,.

Cell treatment. Cells were pretreated with solvent,
Rapa, WM, LY (10 nM, “LC Labs”, USA) for 4 h and then
were treated with Dex (10 mM, “KRKA”, Czech Republic)
for 24 h as described [39].

Western blotting. Western blot analysis was performed
as following: after the incubation cells were washed with
PBS (phosphate buffered saline), then were lysed in RIPA
(radioimmunoprecipitation assay) buffer with protease and
phosphatase inhibitors (“Sigma-Aldrich”, USA). Pro-
tein concentration was evaluated as described in [50]. Pro-
teins were resolved in 10 % PAGE (polyacrylamide gel
electrophoresis) in Tris-glycin buffer with 1 % SDS (sodi-
um dodecyl sulfate) and transferred on PVDF (polyvi-
nylidene fluoride) membrane (pore diameter 0,22 um).
Membranes were blocked with 5 % non-fat milk in TBS

Glucocorticoids

\

Macroautophagy
Cell survival

Autophagosome

Lysosome

Fig. 1. Regulation of autophagy (adapted from [25, 26, 29]). PI3K — phosphoinositide 3-kinases; mTOR — mammalian target of rapamycin complex;

Akt — protein kinase B; ULK — uncoordinated 5 1-like kinase
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Fig. 2. The effects of PI3K (phosphoinositide 3-kinases)/Akt (protein kinase B)/mTOR (mammalian target of rapamycin complex) inhibitors on the level
of p-4E-BP1 and pS6 in breast cancer cells individually and in the combination with Dexamethasone (Dex). The Beclin-1 level was evaluated by Western
blotting with the specific antibodies. Densitometry results were normalized by glyceraldehyde 3-phosphate dehydrogenase (GAPDH) expression. The treatment
effects were compared by one-way ANOVA: a — statistically significant difference from the control; b — statistically significant difference from the samples treated
with Dex (p <0.05). Rapa — rapamycin; WM — wortmannin; LY — LY-294002; pS6 — phospho-S6 ribosomal protein

(TBS) and incubated with primary antibody overnight
at 4 °C. The following antibodies (“Cell Signaling Techno-
logy”, USA) were used: p-Beclin-1 (Ser30), #54101, p-Be-
clin-1 (Ser93), #14717, Beclin-1, #4122, pS6 (phospho-S6
ribosomal protein), #5364, p-4E-BP1, #2855. Then mem-
branes were incubated with anti-rabbit/anti-mouse IgG
secondary antibodies (“Abcam”, UK). To verify equal pro-
tein loading and adequate transfer, the membranes were
probed with anti-glyceraldehyde-3-phosphatehehydro-
henase (GAPDH, ab181602, “Abcam”, UK). Pro-
tein bands were visualized by Clarity™ Western ECL Sub-
strate (“Bio-Rad”, USA) on ImageQuant™ LAS 4000
(“General Electric”, USA). Quantitative analysis were
performed by Imagel software.

Antiproliferative activity. Cell were cultured in 24-well
plates (25000 cell/well) and treated as described above.
Antiproliferative effects were evaluated by trypan blue stain-
ing using cell counter (“Bio-Rad”, USA).

Induction of apoptosis. Cells were cultured in 24-well
plates (50000 cells/well) and treated as described above.
For PI (propidium iodide) staining cells were resuspended
in 70 % ethanol, fixed for 2 h at —20 °C, placed in PBS

containing 5 pL PI, 0,1 % sodium citrate and 0,3 % Tri-
ton-X100 and incubated for 30 min at room temperature.
Analysis by FACScan flow cytometer (Becton Dickinson)
was carried out to discriminate between live and apoptotic
cells.

Statistical analysis. Mean and standard deviation va-
lues were calculated using Microsoft Excel software. The
treatment effects in each experiment were compared by
one-way ANOVA or z-test.

RESULTS

Effects of combined application of Dexamethasone and
PI3K/Akt/mTOR modulators on mTOR activity. Effects
of Rapa, WM, LY and Dex on mTOR inhibition on BC
cells were evaluated by the phosphorylation level of key
down-stream targets of mTOR: 4E-BP1 (eukaryotic initi-
ation factor 4E (eIF4E) binding protein-1 (Thr37/46),
p-4E-BP1) and S6 (phospho-S6 Ribosomal Pro-
tein (Ser240/244), pS6) using Western blotting. It has to be
mentioned that MCF-7 and HCC-1954 expressed the mu-
tant PIK3CA leading to hyperactivation of PI3K/Akt
mTOR signaling.
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Fig. 3. The effects of PI3K (phosphoinositide 3-kinases)/Akt (protein kinase B)/mTOR (phosphoinositide 3-kinases) inhibitors on the expression of Beclin-1
protein in breast cancer cells individually and in the combination with Dexamethasone (Dex). The Beclin-1 level was evaluated by Western blotting with the
specific antibodies. Densitometry results were normalized by glyceraldehyde 3-phosphate dehydrogenase (GAPDH) expression. The treatment effects were
compared by one-way ANOVA: a — statistically significant difference from the control; b — statistically significant difference from the samples treated with Dex

(p <0.05). Rapa — rapamycin; WM — wortmannin; LY — LY-294002

Dexamethasone increased the level of p-4E-BP1
(phospho eukaryotic initiation factor 4E (eIF4E) binding
protein-1) in TNBC cells MDA-MB-231. PI3K/Akt/mTOR
inhibitors did not affect GC-induced phosphorylation
of 4E-BP1 (fig. 2). Rapamycin suppressed the phosphory-
lation of ribosomal protein S6 in all three BC cell lines in-
dividually and in combination with Dex, and inhibited the
phosphorylation of 4E-BP1 in MCF-7 and HCC-1954
cells. Wortmannin and LY in combination with Dex de-
creased the level of p-4E-BP1 and pS6 in HCC-1954 cells
(fig. 2). The level of mTOR activity suppression varied be-
tween different BC subtypes.

Effect of Dexamethasone and PI3k/Akt/mTOR on the
activation of autophagy. Beclin-1 is the main regulator
of autophagy in cells [31, 51], and its cleavage in stress con-
ditions induced the shift in cell metabolism to apoptosis
activation [31].

Incubation of BC cells with all studied molecules indi-
vidually and in combination did not lead to Beclin-1 cleav-
age as well as they did not affect Beclin-1 expression
in MDA-MB-231 cells (fig. 3). At the same time combina-
tion of WM and LY with Dex induced the increase

in Beclin-1 protein level in MCF-7 and HCC-1954 cells.
Rapamycin stimulated the expression of Beclin-1 in com-
bination with Dex in HCC-1954 cell line.

PI3K/Akt/mTOR inhibitors combined with Dex in-
duced the phosphorylation of Beclin-1 by Ser93 residue
in cells with PIK3CA hyperexpression. Thus, we demon-
strated the 1.9 & 0.5-fold increase in p-Beclin-1 level after
incubation of MCF-7 cells with Rapa + Dex, 3.0 £ 0.7-fold
increase with WM+Dex, and 2.5 * 0.2-fold increase with
LY + Dex. Weaker effects were showed in HCC-1954 cells:
the average increase in p-Beclin-1 (Ser93) level was 1.5-fold
(fig. 4).

Dexamethasone and PI3K/Akt/mTOR inhibitors in-
duced the phosphorylation of Beclin-1 by Ser30 in HCC-
1954 cells after individual treatment. We demonstrated the
1.5-fold increase in p-Beclin-1 (Ser30) level in MCF-7 and
MDA-MB-231 cell after the treatment with Rapa. The
similar effect was described in these cell lines after the treat-
ment with WM+ Dex (fig. 5).

Cytotoxic effects of Dexamethasone and PI3K/Akt/
mTOR inhibitors in breast cancer cells. Dex did not reveal
significant cytotoxic effects in BC cells in vitro [7] but
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Fig. 4. The effects of PI3K (phosphoinositide 3-kinases)/Akt (protein kinase B)/mTOR (phosphoinositide 3-kinases) inhibitors on the Phospho-Beclin-1
(Ser93) level in breast cancer cells individually and in the combination with Dexamethasone (Dex). The phosho-Beclin- 1 level was evaluated by Western
blotting with the specific antibodies. Densitometry results were normalized by glyceraldehyde 3-phosphate dehydrogenase (GAPDH) expression. The treatment
effects were compared by one-way ANOVA: a — statistically significant difference from the control; b — statistically significant difference from the samples treated
with Dex (p <0.05). Rapa — rapamycin; WM — wortmannin; LY — LY-294002

induces the growth arrest in G1 phase. Rapamycin inhibit-
ed the proliferation of HCC-1954 and MDA-MB-231 cells
by 50 and 30 %, respectively (fig. 6, a) as well as induced
growth arrest in G1 phase in all studied cells (fig. 6, b).
Combination of PI3K/Akt/mTOR inhibitors with Dex de-
creased the proliferative activity by 20—30 % in MCF-7 cell
line.

DISCUSSION

It is well-known that partial mTOR inhibition leads
to the development of chemoresistance in cancer cells [52,
53]. The suppression of S6 and 4E-BP1 is associated with
antiproliferative effects of Rapa [54—56]. In vitro Rapa in-
hibited the phosphorylation of S6 u 4E-BP1 individually
and in combination with Dex in BC cells. LY decrease the
level of phosphorylated mTOR targets in MCF-7 cells. At
the same time, LY and WM inhibited mTOR activity when
used in combination with GC. The data obtained demon-
strated partial mTOR inhibition and showed higher sensi-
tivity of S6 to partial inhibitors of PI3K/Akt/mTOR sig-
naling [54]. We demonstrated for the first time the potency
of combined application of PI3K/Akt/mTOR modulators

and GC as these compounds did not reveal antagonistic
mode of action.

Also we observed higher cytotoxic effects of Dex, Rapa,
WM and LY when applied in combination rather than in-
dividually in BC cells in vitro (fig. 6). Taken together with
the absence of Beclin-1 cleavage, these results demonstrat-
ed the autophagy contribution to growth arrest in G1 phase
(fig. 3).

Phosphorylation of Beclin-1 by Ser30 and Ser93 resi-
dues is associated with the activation of autophagy [57].
Our results showed the autophagy induction in BC cells by
PI3K/Akt/mTOR inhibitors as well as cooperative effects
of Dex and PI3K/Akt/mTOR inhibitors on autophagy ac-
tivation in BC cells with PI3K excessive activation (MCF-
7 and HCC-1954).

Dex ability to activate autophagy but not BC cell death
in vitro demonstrated the induction of prosurvival micro-
autophagy leading to the development of chemoresistance
of cancer cells. The combination of GC with
PI3K/Akt/mTOR inhibitors allows to activate GC-de-
pendent macroautophagy related to PI3K/Akt/mTOR
suppression.
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Fig. 5. The effects of PI3K (phosphoinositide 3-kinases)/Akt (protein kinase B)/mTOR (phosphoinositide 3-kinases) inhibitors on the Phospho-Beclin-1
(Ser30) level in breast cancer cells individually and in the combination with Dexamethasone (Dex). The phosho-Beclin-1 level was evaluated by Western
blotting with the specific antibodies. Densitometry results were normalized by glyceraldehyde 3-phosphate dehydrogenase (GAPDH) expression. The treatment
effects were compared by one-way ANOVA: a — statistically significant difference from the control; b — statistically significant difference from the samples treated
with Dex (p <0.05). Rapa — rapamycin; WM — wortmannin; LY — LY-294002

CONCLUSION

We demonstrated that the combination of PI3K/Akt/
mTOR with Dex cooperatively suppressed mTOR signaling

and activated autophagy in BC cells in vitro. Overall, our data
provide the rationale for novel GC and PI3K/Akt/mTOR-
based therapy for BC and further investigation of this approach.
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in combination with Dexamethasone (Dex) in breast cancer cells: a — cells were cultured with solvent, Dex, PI3K/Akt/mTOR inhibitors and their combinations.
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