Preview

Advances in Molecular Oncology

Advanced search

Proteoglycans in normal physiology and carcinogenesis

https://doi.org/10.17650/2313-805X-2018-5-1-8-25

Abstract

Malignant transformation of any cell is associated with numerous physiological and morphological disorders at both genomic and protein levels, a variety of macromolecules being involved in. However, the tumour development and metastasis depends on not only the molecular characteristics of the tumour cell but also its interaction with the surrounding extracellular matrix (ECM), which is an important and necessary part of any tissue. An important role in this process belongs to the complex protein-carbohydrate molecules – proteoglycans (PG), which are one of the main component of ECM and cell surface of any tissue and are tightly involved in cell-cell and cell-matrix interactions and signaling. During carcinogenesis, significant changes in the PG structure and composition occur both at the surface of tumour cells and surrounding ECM, resulting in the transformation of normal ECM into a tumour microenvironment and deterioration of cell-cell and cell-matrix communication. Further, the tumorigenic niche contributes to active proliferation of the cancer cells, tumour development and metastasis. At present, many key PG are identified as possible diagnostic and prognostic molecular markers and target molecules for the creation of new antitumor drugs.

The review describes the main PG types, their structure, localisation, functional role in normal cell and tissue physiology and participation in molecular mechanisms of carcinogenesis.

About the Authors

A. V. Suhovskih
Research Institute of Molecular Biology and Biophysics; Novosibirsk State University
Russian Federation

2/12 Timakova St., Novosibirsk 630117

2 Pirogova St., Novosibirsk 630090



E. V. Grigorieva
Research Institute of Molecular Biology and Biophysics; Novosibirsk State University
Russian Federation

2/12 Timakova St., Novosibirsk 630117

2 Pirogova St., Novosibirsk 630090



References

1. Iozzo R.V. Matrix proteoglycans: from molecular design to cellular function. Annu Rev Biochem 1998;67:609–52. DOI: 10.1146/annurev.biochem67.1.609. PMID: 9759499.

2. Yu P., Pearson C.S., Geller H.M. Flexible roles for proteoglycan sulfation and receptor signaling. Trends Neurosci 2018;41(1):47–61. DOI: 10.1016/j.tins.2017.10.005. PMID: 29150096.

3. Lindahl U., Couchman J., Kimata K. et al. Proteoglycans and sulfated glycosaminoglycans. Essentials of glycobiology [Internet]. 3rd edn. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press, 2015–2017. Chapter 17, 2017. PMID: 28876828.

4. Iozzo R.V., Schaefer L. Proteoglycan form and function: a comprehensive nomenclature of proteoglycans. Matrix Biol 2015;42:11–55. DOI: 10.1016/ j.matbio.2015.02.003. PMID: 25701227.

5. Li J.P., Kusche-Gullberg M. Heparan sulfate: biosynthesis, structure, and function. Int Rev Cell Mol Biol 2016;325:215–73. DOI: 10.1016/bs.ircmb.2016.02.009. PMID: 27241222.

6. Mikami T., Kitagawa H. Biosynthesis and function of chondroitin sulfate. Biochim Biophys Acta 2013;1830(10):4719–33. DOI: 10.1016/j.bbagen.2013.06.006. PMID: 23774590.

7. Trowbridge J.M., Gallo R.L. Dermatan sulfate: new functions from an old glycosaminoglycan. Glycobiology 2002;12(9):117R–25R. PMID: 12213784.

8. Funderburgh J.L. Keratan sulfate: structure, biosynthesis, and function. Glycobiology 2000;10(10):951–8. PMID: 11030741.

9. Afratis N., Gialeli C., Nikitovic D. et al. Glycosaminoglycans: key players in cancer cell biology and treatment. FEBS J 2012;279(7):1177–97. DOI: 10.1111/j.1742-4658.2012.08529.x. PMID: 22333131.

10. Medeiros G.F., Mendes A., Castro R.A. et al. Distribution of sulfated glycosaminoglycans in the animal kingdom: widespread occurrence of heparin-like compounds in invertebrates. Biochim Biophys Acta 2000; 1475(3):287–94. PMID: 10913828.

11. Poulain F.E., Yost H.J. Heparan sulfate proteoglycans: a sugar code for vertebrate development. Development 2015;142(20):3456–67. DOI: 10.1242/ dev.098178. PMID: 26487777.

12. Bernfield M., Götte M., Park P.W. et al. Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem 1999;68:729–77. DOI: 10.1146/annurev.biochem.68.1.729. PMID: 10872465.

13. Couchman J.R. Transmembrane signaling proteoglycans. Annu Rev Cell Dev Biol 2010;26:89–114. DOI: 10.1146/ annurev-cellbio-100109-104126. PMID: 20565253.

14. Afratis N.A., Nikitovic D., Multhaupt H.A. et al. Syndecans – key regulators of cell signaling and biological functions. FEBS J 2017;284(1):27–41. DOI: 10.1111/febs.13940. PMID: 27790852.

15. Choi Y., Chung H., Jung H. et al. Syndecan as cell surface receptors: unique structure equates with functional diversity. Matrix Biol 2011;30(2):93–9. DOI: 10.1016/j.matbio.2010.10.006. PMID: 21062643.

16. Piperigkou Z., Mohr B., Karamanos N. et al. Shed proteoglycans in tumor stroma. Cell Tissue Res 2016;365(3):643–55. DOI: 10.1007/s00441-016-2452-4. PMID: 27365088.

17. Filmus J., Capurro M., Rast J. Glypicans. Genome Biol 2008;9(5):224. DOI: 10.1186/gb-2008-9-5-224. PMID: 18505598.

18. Capurro M., Martin T., Shi W. et al. Glypican-3 binds to Frizzled and plays a direct role in the stimulation of canonical Wnt signaling. J Cell Sci 2014;127(Pt 7): 1565–75. DOI: 10.1242/jcs.140871. PMID: 24496449.

19. Nicolosi P.A., Dallatomasina A., Perris R. Theranostic impact of NG2/ CSPG4 proteoglycan in cancer. Theranostics 2015;5(5):530–44. DOI: 10.7150/thno.10824. PMID: 25767619.

20. Yadavilli S., Hwang E.I., Packer R.J. et al. The role of NG2 proteoglycan in glioma. Transl Oncol 2016;9(1):57–63. DOI: 10.1016/j.tranon.2015.12.005. PMID: 26947882.

21. Sakry D., Trotter J. The role of the NG2 proteoglycan in OPC and CNS network function. Brain Res 2016;1638(Pt B): 161–6. DOI: 10.1016/j.brainres.2015.06.003. PMID: 26100334.

22. Morath I., Hartmann T.N., Orian-Rousseau V. CD44: more than a mere stem cell marker. Int J Biochem Cell Biol 2016;81(Pt A):166–73. DOI: 10.1016/j.biocel.2016.09.009. PMID: 27640754.

23. Jijiwa M., Demir H., Gupta S. et al. CD44v6 regulates growth of brain tumor stem cells partially through the AKT-mediated pathway. PLoS One 2011;6(9):e24217. DOI: 10.1371/journal.pone.0024217. PMID: 21915300.

24. Stanton H., Melrose J., Little C.B. et al. Proteoglycan degradation by the ADAMTS family of proteinases. Biochim Biophys Acta 2011;1812(12):1616–29. DOI: 10.1016/j.bbadis.2011.08.009. PMID: 21914474.

25. Binder M.J., McCoombe S., Williams E.D. et al. The extracellular matrix in cancer progression: role of hyalectan proteoglycans and ADAMTS. Cancer Lett 2017;385:55–64. DOI: 10.1016/j.canlet.2016.11.001. PMID: 27838414.

26. Wight T.N., Kinsella M.G., Evanko S.P. et al. Versican and the regulation of cell phenotype in disease. Biochim Biophys Acta 2014;1840(8):2441–51. DOI: 10.1016/j.bbagen.2013.12.028. PMID: 24401530.

27. Andersson-Sjöland A., Hallgren O., Rolandsson S. et al. Versican in inflammation and tissue remodeling: the impact on lung disorders. Glycobiology 2015;25(3):243–51. DOI: 10.1093/glycob/cwu120. PMID: 25371494.

28. Sivan S.S., Wachtel E., Roughley P. et al. Structure, function, aging and turnover of aggrecan in the intervertebral disc. Biochem J 2006;399(1):29–35. DOI: 10.1016/j.bbagen.2014.07.013. PMID: 25065289.

29. Nia H.T., Ortiz C., Grodzinsky A. Aggrecan: approaches to study biophysical and biomechanical properties. Methods Mol Biol 2015;1229:221–37. DOI: 10.1007/978-1-4939-1714-3_20. PMID: 25325957.

30. Frischknecht R., Seidenbecher C.I. Brevican: a key proteoglycan in the perisynaptic extracellular matrix of the brain. Int J Biochem Cell Biol 2012;44(7):1051–4. DOI: 10.1016/j.biocel.2012.03.022. PMID: 22537913.

31. Chen L., Liao J., Klineberg E. et al. Small leucine-rich proteoglycans (SLRPs): characteristics and function in the intervertebral disc. J Tissue Eng Regen Med 2017;11(3):602–8. DOI: 10.1002/term.2067. PMID: 26370612.

32. Pietraszek-Gremplewicz K., Karamanou K., Niang A. et al. Small leucine-rich proteoglycans and matrix metalloproteinase-14: Key partners? Matrix Biol 2017. DOI: 10.1016/ j.matbio.2017.12.006. PMID: 29253518.

33. Maytin E.V. Hyaluronan: more than just a wrinkle filler. Glycobiology 2016;26(6):553–9. DOI: 10.1093/glycob/ cww033. PMID: 26964566.

34. Pozzi A., Yurchenco P.D., Iozzo R.V. The nature and biology of basement membranes. Matrix Biol 2017;57–58:1–11. DOI: 10.1016/ j.matbio.2016.12.009. PMID: 28040522.

35. McCarthy K.J. The basement membrane proteoglycans perlecan and agrin: something old, something new. Curr Top Membr 2015;76:255–303. DOI: 10.1016/bs.ctm.2015.09.001. PMID: 26610917.

36. Gubbiotti M.A., Neill T., Iozzo R.V. et al. A current view of perlecan in physiology and pathology: a mosaic of functions. Matrix Biol 2017;57–58:285–98. DOI: 10.1016/j.matbio.2016.09.003. PMID: 27613501.

37. Farach-Carson M.C., Warren C.R., Harrington D.A., Carson D.D. Border patrol: insights into the unique role of perlecan/heparan sulfate proteoglycan 2 at cell and tissue borders. Matrix Biol 2014;34:64–79. DOI: 10.1016/ j.matbio.2013.08.004. PMID: 24001398.

38. Halfter W., Dong S., Schurer B., Cole G.J. Collagen XVIII is a basement membrane heparan sulfate proteoglycan. J Biol Chem 1998;273(39):25404–12. PMID: 9738008.

39. Theocharis A.D., Karamanos N.K. Proteoglycans remodeling in cancer: underlying molecular mechanisms. Matrix Biol 2017. DOI: 10.1016/ j.matbio.2017.10.008. PMID: 29128506.

40. Knelson E.H., Nee J.C., Blobe G.C. Heparan sulfate signaling in cancer. Trends Biochem Sci 2014;39(6):277–88. DOI: 10.1016/j.tibs.2014.03.001. PMID: 24755488.

41. Schaefer L., Tredup C., Gubbiotti M.A. et al. Proteoglycan neofunctions: regulation of inflammation and autophagy in cancer biology. FEBS J 2017;284(1): 10–26. DOI: 10.1111/febs.13963. PMID: 27860287.

42. Neill T., Schaefer L., Iozzo R.V. Decorin as a multivalent therapeutic agent against cancer. Adv Drug Deliv Rev 2016;97: 174–85. DOI: 10.1016/j.addr. 2015.10.016. PMID: 26522384.

43. Reed C.C., Gauldie J., Iozzo R.V. Suppression of tumorigenicity by adenovirus-mediated gene transfer of decorin. Oncogene 2002;21(23):3688–95. DOI: 10.1038/sj.onc.1205470. PMID: 12032837.

44. Goldoni S., Seidler D.G., Heath J. et al. An antimetastatic role for decorin in breast cancer. Am J Pathol 2008;173(3):844–55. DOI: 10.2353/ajpath.2008.080275. PMID: 18688028.

45. Du W.W., Yang W., Yee A.J. Roles of versican in cancer biology – tumorigenesis, progression and metastasis. Histol Histopathol 2013;28(6):701–13. DOI: 10.14670/HH-28.701. PMID: 23519970.

46. Yoneda A., Lendorf M.E., Couchman J.R. et al. Breast and ovarian cancers: a survey and possible roles for the cell surface heparan sulfate proteoglycans. J Histochem Cytochem 2012;60(1):9–21. DOI: 10.1369/0022155411428469. PMID: 22205677.

47. Theocharis A.D., Skandalis S.S., Neill T. et al. Insights into the key roles of proteoglycans in breast cancer biology and translational medicine. Biochim Biophys Acta 2015;1855(2):276–300. DOI: 10.1016/j.bbcan.2015.03.006. PMID: 25829250.

48. Eshchenko T.Y., Rykova V.I., Chernakov A.E. et al. Expression of different proteoglycans in human breast tumors. Biochemistry (Mosc) 2007;72(9): 1016–20. PMID: 17922662.

49. Yang X., Qiu M., Hu J. et al. Glypican-5 is a novel metastasis suppressor gene in non-small cell lung cancer. Cancer Lett 2013;341(2):265–73. DOI: 10.1016/j.canlet.2013.08.020. PMID: 23962560.

50. Melo S., Luecke L., Kahlert C. et al. Glypican1 identifies cancer exosomes and facilitates early detection of cancer. Nature 2015;523(7559):177–82. DOI: 10.1038/nature14581. PMID: 26106858.

51. Gharbaran R. Insights into the molecular roles of heparan sulfate proteoglycans (HSPGs-syndecans) in autocrine and paracrine growth factor signaling in the pathogenesis of Hodgkin’s lymphoma. Tumour Biol 2016;37(9):11573–88. DOI: 10.1007/s13277-016-5118-7. PMID: 27317256.

52. Tsidulko A.Y., Matskova L., Astakhova L.A. et al. Proteoglycan expression correlates with the phenotype of malignant and non-malignant EBV-positive B-cell lines. Oncotarget 2015;6(41):43529–39. DOI: 10.18632/oncotarget.5984. PMID: 26527314.

53. Hu T.H., Huang C.C., Wu C.L. et al. Increased endostatin/collagen XVIII expression correlates with elevated VEGF level and poor prognosis in hepatocellular carcinoma. Mod Pathol 2005;18(5): 663–72. DOI: 10.1038/modpathol. 3800336. PMID: 15605080.

54. Suhovskih A.V., Aidagulova S.V., Kashuba V.I. et al. Proteoglycans as potential microenvironmental biomarkers for colon cancer. Cell Tissue Res 2015;361(3):833–44. DOI: 10.1007/s00441-015-2141-8. PMID: 25715761.

55. Baghy K., Tátrai P., Regős E. et al. Proteoglycans in liver cancer. World J Gastroenterol 2016;22(1):379–93. DOI: 10.3748/wjg.v22.i1.379. PMID: 26755884.

56. Leygue E., Snell L., Dotzlaw H. et al. Lumican and decorin are differentially expressed in human breast carcinoma. J Pathol 2000;192(3):313–20. DOI: 10.1002/1096-9896(200011) 192:33.0.CO;2-B. PMID: 11054714.

57. Weber C.K., Sommer G., Michl P. et al. Biglycan is overexpressed in pancreatic cancer and induces G1-arrest in pancreatic cancer cell lines. Gastroenterology 2001;121(3):657–67. PMID: 11522750.

58. Zimina N.P., Dmitriev I.P., Rykova V.I. Composition and degree of sulfation of glycosaminoglycans from tissues of different animal species: heterogeneity and tissue specificity of heparan sulfates. Biokhimiia 1987;52(6):984–90. PMID: 2959327.

59. Суховских А.В., Григорьева Э.В. Тканеспецифичность экспрессии протеогликанов в различных типах опухолей человека. Успехи молекулярной онкологии 2016;3(1):53–60. [Suhovskih A.V., Grigor’eva E.V. Tissue-specificity of proteoglycans expression in different cancers. Uspekhi molekulyarnoy onkologii = Advances in Molecular Oncology 2016;3(1):53–60. (In Russ.)]. DOI: 10.17650/ 2313-805X.2016.3.1.53-60.

60. Suhovskih A.V., Domanitskaya N.V., Tsidulko A.Y. et al. Tissue-specificity of heparan sulfate biosynthetic machinery in cancer. Cell Adh Migr 2015;9(6):452–9. DOI: 10.1080/19336918.2015.1049801. PMID: 26120938.

61. Kazanskaya G.M., Tsidulko A.Y., Volkov A.M. et al. Heparan sulfate accumulation and perlecan/HSPG2 upregulation in tumour tissue predict low relapse-free survival for patients with glioblastoma. Histochem Cell Biol 2018. DOI: 10.1007/s00418-018-1631-7. PMID: 29322326.

62. Tsidulko A.Y., Kazanskaya G.M., Kostromskaya D.V. et al. Prognostic relevance of NG2/CSPG4, CD44 and Ki67 in patients with glioblastoma. Tumour Biol 2017;39(9):1010428317724282. DOI: 10.1177/1010428317724282. PMID: 28945172.

63. Suhovskih A.V., Kashuba V.I., Klein G., Grigorieva E.V. Prostate cancer cells specifically reorganize epithelial cellfibroblast communication through proteoglycan and junction pathways. Cell Adh Migr 2017;11(1):39–53. DOI: 10.1080/19336918.2016.1182292. PMID: 27111714.

64. Suhovskih A.V., Mostovich L.A., Kunin I.S. et al. Proteoglycan expression in normal human prostate tissue and prostate cancer. ISRN Oncol 2013:680136. DOI: 10.1155/2013/680136. PMID: 23691363.

65. Wang D., Anderson J.C., Gladson C.L. The role of the extracellular matrix in angiogenesis in malignant glioma tumors. Brain Pathol 2005;15(4):318–26. PMID: 16389944.

66. Wade A., Robinson A.E., Engler J.R. et al. Proteoglycans and their roles in brain cancer. FEBS J 2013;280(10):2399–417. DOI: 10.1111/febs.12109.23281850. PMID: 23281850.

67. Yao T., Zhang C.G., Gong M.T. et al. Decorin-mediated inhibition of the migration of U87MG glioma cells involves activation of autophagy and suppression of TGF-β signaling. FEBS Open Bio 2016;6(7):707–19. DOI: 10.1002/2211-5463.12076. PMID: 27398310.

68. Biglari A., Bataille D., Naumann U. et al. Effects of ectopic decorin in modulating intracranial glioma progression in vivo, in a rat syngeneic model. Cancer Gene Ther 2004;11(11):721–32. DOI: 10.1038/ sj.cgt.7700783. PMID: 15475879.

69. Arslan F., BosserhoffA.K., Nickl-Jockschat T. et al. The role of versican isoforms V0/V1 in glioma migration mediated by transforming growth factor-β2. Br J Cancer 2007;96(10):1560–8. DOI: 10.1038/ sj.bjc.6603766. PMID: 17453002.

70. Onken J., Moeckel S., Leukel P. et al. Versican isoform V1 regulates proliferation and migration in high-grade gliomas. J Neurooncol 2014;120(1):73–83. DOI: 10.1007/s11060-014-1545-8. PMID: 25064688.

71. Stallcup W.B., Huang F.J. A role for the NG2 proteoglycan in glioma progression. Cell Adh Migr 2008;2(3):192–201. PMID: 19262111.

72. Higgins S.C., Bolteus A.J., Donovan L.K. et al. Expression of the chondroitin sulphate proteoglycan, NG2, in paediatric brain tumors. Anticancer Res 2014;34(12):6919–24. PMID: 25503117.

73. Svendsen A., Verhoeff J.J., Immervoll H. et al. Expression of the progenitor marker NG2/CSPG4 predicts poor survival and resistance to ionising radiation in glioblastoma. Acta Neuropathol 2011;122(4):495–510. DOI: 10.1007/s00401-011-0867-2. PMID: 21863242.

74. Lu R., Wu C., Guo L. et al. The role of brevican in glioma: promoting tumor cell motility in vitro and in vivo. BMC Cancer 2012;12:607. DOI: 10.1186/1471-2407-12-607. PMID: 23253190.

75. Hu B., Kong L.L., Matthews R.T. The proteoglycan brevican binds to fibronectin after proteolytic cleavage and promotes glioma cell motility. J Biol Chem 2008;283(36):24848–59. DOI: 10.1074/jbc.M801433200. PMID: 18611854.

76. Wiranowska M., Ladd S., Smith S.R. et al. CD44 adhesion molecule and neuro-glial proteoglycan NG2 as invasive markers of glioma. Brain Cell Biol 2006;35(2–3): 159–72. DOI: 10.1007/ s11068-007-9009-0. PMID: 17957481.

77. Radotra B., McCormick D. Glioma invasion in vitro is mediated by CD44–hyaluronan interactions. J Pathol 1997;181(4):434–8. DOI: 10.1002/(SICI)1096-9896(199704) 181:43.0.CO;2-S. PMID: 9196442.

78. Roy A., Attarha S., Weishaupt H. et al. Serglycin as a potential biomarker for glioma: association of serglycin expression, extent of mast cell recruitment and glioblastoma progression. Oncotarget 2017;8(15):24815–27. DOI: 10.18632/oncotarget.15820. PMID: 28445977.

79. Xu Y., Yuan J., Zhang Z. et al. Syndecan-1 expression in human glioma is correlated with advanced tumor progression and poor prognosis. Mol Biol Rep 2012;39(9): 8979–85. DOI: 10.1007/ s11033-012-1767-9. PMID: 22714920.

80. Watanabe A., Mabuchi T., Satoh E. et al. Expresson of syndecans, a heparan sulfate proteoglycan, in malignant gliomas: participation of nuclear factor-κB in upregulation of syndecan-1 expression. J Neurooncol 2006;77(1):25–32. DOI: 10.1007/s11060-005-9010-3. PMID: 16132527.

81. Qiao D., Meyer K., Mundhenke C. et al. Heparan sulfate proteoglycans as regulators of fibroblast growth factor-2 signaling in brain endothelial cells. Spеcific role for glypican-1 in glioma angiogenesis. J Biol Chem 2003;278(18):16045–53. DOI: 10.1074/jbc.M211259200. PMID: 12591930.

82. Su G., Meyer K., Nandini C.D. et al. Glypican-1 is frequently overexpressed in human gliomas and enhances FGF-2 signaling in glioma cells. Am J Pathol 2006;168(6):2014–26. DOI: 10.2353/ajpath.2006.050800. PMID: 16723715.

83. Edwards I.J. Proteoglycans in prostate cancer. Nat Rev Urol 2012;9(4):196–206. DOI: 10.1038/nrurol.2012.19. PMID: 22349653.

84. Kiviniemi J., Kallajoki M., Kujala I. et al. Altered expression of syndecan-1 in prostate cancer. APMIS 2004;112(2):89–97. DOI: 10.1111/j.1600-0463.2004. apm1120202.x. PMID: 15056224.

85. Contreras H.R., Ledezma R.A., Vergara J. et al. The expression of syndecan-1 and -2 is associated with Gleason score and epithelial-mesenchymal transition markers, E-cadherin and beta-catenin, in prostate cancer. Urol Oncol 2010;28(5):534–40. DOI: 10.1016/ j.urolonc.2009.03.018. PMID: 19450993.

86. Shariat S.F., Svatek R.S., Kabbani W. et al. Prognostic value of syndecan-1 expression in patients treated with radical prostatectomy. BJU Int 2008;101(2):232–7. DOI: 10.1111/j.1464-410X.2007.07181.x. PMID: 17868422.

87. Zellweger T., Ninck C., Bloch M. et al. Expression patterns of potential therapeutic targets in prostate cancer. Int J Cancer 2005;113(4):619–28. DOI: 10.1002/ijc.20615. PMID: 15472903.

88. Brimo F., Vollmer R.T., Friszt M. et al. Syndecan-1 expression in prostate cancer and its value as biomarker for disease progression. BJU Int 2010;106(3):418–23. DOI: 10.1111/j.1464-410X.2009.09099.x. PMID: 20002675.

89. Truong Q., Justiniano I.O., Nocon A.L. et al. Glypican-1 as a biomarker for prostate cancer: isolation and characterization. J Cancer 2016;7(8):1002–9. DOI: 10.7150/jca.14645. PMID: 27313791.

90. Zhang C., Liu Z., Wang L. et al. Prognostic significance of GPC5 expression in patients with prostate cancer. Tumour Biol 2016;37(5):6413–8. DOI: 10.1007/s13277-015-4499-3. PMID: 26631038.

91. Warren C.R., Grindel B.J., Francis L. et al. Transcriptional activation by NFκB increases perlecan/HSPG2 expression in the desmoplastic prostate tumor microenvironment. J Cell Biochem 2014;115(7):1322–33. DOI: 10.1002/ jcb.24788. PMID: 24700612.

92. Grindel B.J., Martinez J.R., Pennington C.L. et al. Matrilysin/matrix metalloproteinase-7 (MMP7) cleavage of perlecan/HSPG2 creates a molecular switch to alter prostate cancer cell behavior. Matrix Biol 2014;36:64–76. DOI: 10.1016/j.matbio.2014.04.005. PMID: 24833109.

93. Grindel B., Li Q., Arnold R. et al. Perlecan/HSPG2 and matrilysin/MMP-7 as indices of tissue invasion: tissue localization and circulating perlecan fragments in a cohort of 288 radical prostatectomy patients. Oncotarget 2016;7(9):10433–47. DOI: 10.18632/oncotarget.7197. PMID: 26862737.

94. Coulson-Thomas V.J., Gesteira T.F., Coulson-Thomas Y.M. et al. Fibroblast and prostate tumor cell cross-talk: fibroblast differentiation, TGF-β, and extracellular matrix down-regulation. Exp Cell Res 2010;316(19):3207–26. DOI: 10.1016/j.yexcr.2010.08.005. PMID: 20727350.

95. Xu W., Neill T., Yang Y. et al. The systemic delivery of an oncolytic adenovirus expressing decorin inhibits bone metastasis in a mouse model of human prostate cancer. Gene Ther 2015;22(3):247–56. DOI: 10.1038/gt.2014.110. PMID: 25503693.

96. Holland J.W., Meehan K.L., Redmond S.L. et al. Purification of the keratan sulfate proteoglycan expressed in prostatic secretory cells and its identification as lumican. Prostate 2004;59(3):252–9. DOI: 10.1002/pros.20002. PMID: 15042600.

97. Coulson-ThomasV.J., Coulson-ThomasY.M., Gesteira T.F. et al. Lumican expression, localization and antitumor activity in prostate cancer. Exp Cell Res 2013;319(7):967–81. DOI: 10.1016/j.yexcr.2013.01.023. PMID: 23399832.

98. True L.D., Hawley S., Norwood T.H. et al. The accumulation of versican in the nodules of benign prostatic hyperplasia. Prostate 2009;69(2):149–58. DOI: 10.1002/pros.20861. PMID: 18819099.

99. Arichi N., Mitsui Y., Hiraki M. et al. Versican is a potential therapeutic target in docetaxel-resistant prostate cancer. Oncoscience 2015;2(2):193–204. DOI: 10.18632/oncoscience.136. PMID: 25859560.

100. Mulloy B., Lever R., Page C.P. Mast cell glycosaminoglycans. Glycoconj J 2017;34(3):351–61. DOI: 10.1007/ s10719-016-9749-0. PMID: 27900574.

101. Li X.J., Qian C.N. Serglycin in human cancers. Chin J Cancer 2011;30(9):585–9. DOI: 10.5732/cjc.011.10314. PMID: 21880179.

102. Korpetinou A., Skandalis S.S., Labropoulou V.T. et al. Serglycin: at the crossroad of inflammation and malignancy. Front Oncol 2014;3:327. DOI: 10.3389/fonc.2013.00327. PMID: 24455486.

103. Purushothaman A., Toole B.P. Serglycin proteoglycan is required for multiple myeloma cell adhesion, in vivo growth, and vascularization. J Biol Chem 2014;289(9):5499–509. DOI: 10.1074/jbc.M113.532143. PMID: 24403068.

104. Bhavanandan V.P., Davidson E.A. Mucopolysaccharides associated with nuclei of cultured mammalian cells. PNAS 1975;72(6):2032–6. PMID: 124440.

105. Margolis R.K., Crockett C.P., Kiang W.L. et al. Glycosaminoglycans and glycoproteins associated with rat brain nuclei. BBA-General Subjects 1976;451(2):465–9. PMID: 999866.

106. Stein G.S., Roberts R.M., Davis J.L. et al. Are glycoproteins and glycosaminoglycans components of the eukaryotic genome? Nature 1975;258(5536):639–41. PMID: 128700.

107. Hiscock D.R., Yanagishita M., Hascall V.C. Nuclear localization of glycosaminoglycans in rat ovarian granulosa cells. J Biol Chem 1994;269(6):4539–46. PMID: 8308024.

108. Carthy J.M., Abraham T., Meredith A.J. et al. Versican localizes to the nucleus in proliferating mesenchymal cells. Cardiovasc Pathol 2015;24(6):368–74. DOI: 10.1016/j.carpath.2015.07.010. PMID: 26395512.

109. Григорьева Э.В., Рыкова В.И. Ядерные протеогликаны клеток печени мышей: выделение и идентификация. Биохимия 1992;58(8):1165–70. [Grigor’eva E.V., Rykova V.I. Nuclear proteoglycans of murine liver cells: isolation and identification. Biokhimiya = Biochemistry 1992;58(8):1165–70. (In Russ.)].

110. Рыкова В.И., Григорьева Э.В. Состав протеогликанов клеточных ядер гепатомы мыши. Биохимия 1998;63(11):1271–6. [Rykova V.I., Grigor’eva E.V. The composition of proteoglycans of mouse hepatoma cell nuclei. Biokhimiya = Biochemistry 1998;63(11):1271–6. (In Russ.)].

111. Kovalszky I., Hjerpe A., Dobra K. Nuclear translocation of heparan sulfate proteoglycans and their functional significance. Biochem Biophys Acta 2014;1840(8):2491–7. DOI: 10.1016/j.bbagen.2014.04.015. PMID: 24780644.

112. Ishihara M., Fedarko N.S., Conrad H.E. Transport of heparan sulfate into the nuclei of hepatocytes. J Biol Chem 1986;261(29):13575–80. PMID: 2944884.

113. Fedarko N.S., Conrad H.E. A unique heparan sulfate in the nuclei of hepatocytes: structural changes with the growth state of the cells. J Cell Biol 1986;102(2):587–99. PMID: 2935544.

114. Cheng F., Petersson P., Arroyo-Yanguas Y. et al. Differences in the uptake and nuclear localization of anti-proliferative heparan sulfate between human lung fibroblasts and human lung carcinoma cells. J Cell Biochem 2001;83(4):597–606. PMID: 11746503.

115. Stewart M.D., Sanderson R.D. Heparan sulfate in the nucleus and its control of cellular functions. Matrix Biol 2014;35:56–9. DOI: 10.1016/j.matbio. 2013.10.009. PMID: 24309018.

116. Amalric F., Bouche G., Bonnet H. et al. Fibroblast growth factor-2 (FGF-2) in the nucleus: translocation process and targets. Biochem Pharmacol 1994;47(1):111–5. PMID: 8311835.

117. Hsia E., Richardson T.P., Nugent M.A. Nuclear localization of basic fibroblast growth factor is mediated by heparan sulfate proteoglycans through protein kinase C signaling. J Cell Biochem 2003;88(6):1214–25. DOI: 10.1002/jcb.10470. PMID: 12647303.

118. Zong F., Fthenou E., Wolmer N. et al. Syndecan-1 and FGF-2, but not FGF receptor-1, share a common transport route and co-localize with heparanase in the nuclei of mesenchymal tumor cells. PLoS One 2009;4(10):e7346. DOI: 10.1371/journal.pone.0007346. PMID: 19802384.

119. Brockstedt U., Dobra K., Nurminen M. et al. Immunoreactivity to cell surface syndecans in cytoplasm and nucleus: tubulin-dependent rearrangements. Exp Cell Res 2002;274(2):235–45. DOI: 10.1006/excr.2002.5477. PMID: 11900484.

120. Ishihara M., Conrad H.E. Correlations between heparan sulfate metabolism and hepatoma growth. J Cell Physiol 1989;138(3):467–76. DOI: 10.1002/jcp.1041380305. PMID: 2522457.

121. Fedarko N.S., Ishihara M., Conrad H.E. Control of cell division in hepatoma cells by exogenous heparan sulfate proteoglycan. J Cell Physiol 1989;139(2):287–94. DOI: 10.1002/jcp.1041390210. PMID: 2715188.

122. Liang Y., Häring M., Roughley P.J. et al. Glypican and biglycan in the nuclei of neurons and glioma cells: presence of functional nuclear localization signals and dynamic changes in glypican during the cell cycle. J Cell Biol 1997;39(4):851–64. PMID: 9362504.

123. Buczek-Thomas J.A., Hsia E., Rich C.B. et al. Inhibition of histone acetyltransferase by glycosaminoglycans. J Cell Biochem 2008; 105(1):108–20. DOI: 10.1002/jcb.21803. PMID: 18459114.

124. Purushothaman A., Hurst D.R., Pisano C. et al. Heparanase-mediated loss of nuclear syndecan-1 enhances histone acetyltransferase (HAT) activity to promote expression of genes that drive an aggressive tumor phenotype. J Biol Chem 2011;286(35):30377–83. DOI: 10.1074/jbc.M111.254789. PMID: 21757697.

125. Romanato M., Julianelli V., Zappi M. et al. The presence of heparan sulfate in the mammalian oocyte provides a clue to human sperm nuclear decondensation in vivo. Hum Reprod 2008;23(5):1145–50. DOI: 10.1093/humrep/den028. PMID: 18287106.

126. Sanchez M.C., Alvarez Sedo C., Julianelli V.L. et al. Dermatan sulfate synergizes with heparin in murine sperm chromatin decondensation. Syst Biol Reprod Med 2013;59(2):82–90. DOI: 10.3109/19396368.2012.756952. PMID: 23301776.

127. Kovalszky I., Dudás J., Oláh-Nagy J. et al. Inhibition of DNA topoisomerase I activity by heparin sulfate and modulation by basic fibroblast growth factor. Mol Cell Biochem 1998;183(1):11–23. PMID: 9655174.

128. Cheng F., Belting M., Fransson L.A. et al. Nucleolin is a nuclear target of heparan sulfate derived from glypican-1. Exp Cell Res 2017;354(1):31–9. DOI: 10.1016/j.yexcr.2017.03.021. PMID: 28300561.

129. Григорьева Э.В., Рыкова В.И. Взаимодействие ядерных протеогликанов с олигорибонуклеотидами. Доклады Академии наук 1997;356(5):693–5. [Grigor’eva E.V., Rykova V.I. Interactions between nuclear proteoglycans and oligoribonucleotides. Doklady Akademii nauk = Proceedings of the Academy of Sciences 1997;356(5):693–5. (In Russ.)].

130. Busch S.J., Martin G.A., Barnhart R.L. et al. Trans-repressor activity of nuclear glycosaminoglycans on Fos and Jun/AP-1 oncoprotein-mediated transcription. J Cell Biol 1992;116(1):31–42. PMID: 1730747.

131. Dudas J., Ramadori G., Knittel T. et al. Effect of heparin and liver heparansulphate on interaction of HepG2-derived transcription factors and their cis-acting elements: altered potential of hepatocellular carcinoma heparansulphate. Biochem J 2000;350(1):245–51. PMID: 10926850.


Review

For citations:


Suhovskih A.V., Grigorieva E.V. Proteoglycans in normal physiology and carcinogenesis. Advances in Molecular Oncology. 2018;5(1):8-25. (In Russ.) https://doi.org/10.17650/2313-805X-2018-5-1-8-25

Views: 929


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2313-805X (Print)
ISSN 2413-3787 (Online)