Preview

Advances in Molecular Oncology

Advanced search

HLA II genes distribution in Epstein–Barr virus-associated nasopharyngeal carcinoma and other tumors of the oral cavity patients in Russia

https://doi.org/10.17650/2313-805X-2018-5-1-43-52

Abstract

Background. It has been proved that for the nasopharyngeal carcinoma (NPC) the etiological agent is the Epstein–Barr virus (EBV). Being an ubiquitous infection, EBV, under certain conditions, is able to display its oncogenic potential. Among a wide range of tumors associated with EBV, the NPC occupies a special place because it is characterized by a geographically and ethnically heterogeneous distribution, suggesting that in the pathogenesis of NPC, in addition to EBV, an important role is played by other factors, such as genetic predisposition to this neoplasm. Among known genetic factors influencing the frequency of NPC development, the human leukocyte antigen (HLA) complex occupies an important place, as it plays a central role in the presentation of viral antigens to the immune system. In Russia, the association of HLA alleles with the risk of EBV associated forms of NPC development and with development of other oral cavity tumors (OOCT), not associated with the virus, has not been studied. In the literature there are contradictory information about HLA genes, which determine the predisposition to the emergence of these tumors, and their role in the initiation and formation an immune response to EBV proteins.

Objective: to study the distribution of the of DQA1-, DQB1-, DRB1-HLA class II gene variants associated with respectively the risk or resistance to the development of NPC and OOCT and with a high and low level of antibody response to EBV main proteins. A group of healthy persons served as a control.

Materials and methods. Blood samples from 62 patients with NPC, 44 patients with OOCT, and as control, 300 healthy individuals, were used in the study. The blood serum samples of NPC and OOCT patients were tested for the presence of immunoglobulin classes G and A antibodies to capsid and early EBV antigens by indirect immunofluorescence. All serum samples of patients and healthy individuals were genotyped on HLA-DQA1, -DQB1 and -DRB1 by the method of multi-primer amplification by sequence-specific primers by real-time polymerase chain reaction.

Results. In NPC patients, an increase in the frequency of HLA-DRB1*08 was found when compared with the frequency of a similar allele in healthy individuals (5.6 % vs 1.8 %; odds ratio (OR) 3.2; 95 % confidence interval (CI) 1.1–9.1; p = 0.02), and, on the contrary, a lower HLA-DQB1*0301 frequency was detected (16.1 % vs 25.3 %; p <0.05) than in healthy individuals. The data obtained suggest that the HLA-DRB1*08 gene is associated with an increased sensitivity to NPC.

In OOCT patients, HLA-DQB1*0502–4 and HLA-DRB1*16 variants were less common than in healthy individuals (1.1 % vs 6.8 %; p <0.05 and 1.1 % vs 6.7 %; OR 0.16; 95 % CI 0.01–1.08; p <0.05, respectively), suggesting that the HLA-DQB1*0301 gene is associated with resistance to NPC, and HLA-DQB1*0502–4 and HLA-DRB1*16 variants – with resistance to OOCT. It is interesting to note the difference in the frequency of HLA-DRB1*13 between NPC and OOCT patients (17.7 % vs 6.8 %; OR 2.9; 95 %

CI 1.1–8.6; p <0.05). One can suggest that this difference is related to the proven involvement of EBV in the NPC development. There were no other differences in the frequencies of class II HLA genes between the groups of NPC and OOCT patients. For the first time in Russia the importance of alleles DQA1, DQB1 and DRB1 of the HLA gene for the NPC and OOCT development, malignant tumors, respectively associated and non-associated with EBV, was studied. The results of the investigation completed together with known literature data allow us to conclude that the above alleles of the HLA class II gene can serve as a factor predisposing to the development of NPC in Russia.

Conclusion. However, in order to establish a strict association between a specific HLA haplotype and the NPC and OOCT incidence, the information obtained is insufficient due to the complexity and variability of the genetic control of immune responses controlling the tumor process. A comprehensive study of this issue using different immune response genes and populations of different ethnic origins will probably help to elucidate the effect of genetic polymorphism on the risk of NPC and OOCT development in Russia.

About the Authors

N. B. Senyuta
Research Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation
24 Kashirskoe Shosse, Moscow 115478


M. N. Boldyreva
State Research Center “Institute of Immunology”, Federal Medical-Biological Agency of Russia
Russian Federation
Build. 2, 24 Kashirskoe Shosse, Moscow 115478


E. V. Goncharova
Research Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation
24 Kashirskoe Shosse, Moscow 115478


D. M. Maximovich
Research Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation
24 Kashirskoe Shosse, Moscow 115478


L. N. Shcherbak
Research Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation
24 Kashirskoe Shosse, Moscow 115478


T. E. Dushenkina
Research Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation
24 Kashirskoe Shosse, Moscow 115478


V. E. Gurtsevitch
Research Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation
24 Kashirskoe Shosse, Moscow 115478


References

1. Barnes L., Evenson J.W., Reichart P. et al. World Health Organization Classification of Tumours. Pathology and Genetics of Head and Neck Tumours. Lyon: IARC Press, 2005.

2. zur Hausen H., Schulte-Holthausen H., Klein G. et al. EBV DNA in biopsies of Burkitt tumors and anaplastic carcinoma of the nasopharynx. Nature 1970;228(5276):1056–8. PMID: 4320657.

3. Ho H.C., Ng M.H., Kwan Y.C., Chau J.C. Epstein–Barr-virus-specific IgA and IgG serum antibodies in nasopharyngeal carcinoma. Br J Cancer 1976;34(6):655–60.

4. Pearson G.R. Epstein–Barr virus and nasopharyngeal carcinoma. J Cell Biochem Suppl 1993;17F:150–4. PMID: 8412186.

5. Tsang C.M., Tsao S.W. The role of Epstein–Barr virus infection in pathogenesis of nasopharyngeal carcinoma. Virol Sin 2015;30(2):107–21. DOI: 10.1007/s12250-015-3592-5. PMID: 25910483.

6. Ho H.C., Kwan H.C., Ng M.H., de The G. Serum IgА antibodies to Epstein– Barr virus capsid antigen preceding symptoms of nasopharyngeal carcinoma. Lancet 1978;1(8061):436. PMID: 75457.

7. Chang E.T., Adami H.O. The enigmatic epidemiology of nasopharyngeal carcinoma. Cancer Epidemiol Biomarkers Prev 2006;15(10):1765–77. DOI: 10.1158/1055-9965.EPI-06-0353. PMID: 17035381.

8. Huang T., Liu Q., Huang H., Cao S. Study on genetic epidemiology of nasopharyngeal carcinoma in Guangdong, China. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 2002;19(2):134–7. PMID: 11941590.

9. Grulich A.E., McCredie M., Coates M. Cancer incidence in Asian migrants to New South Wales, Australia. Br J Cancer 1995;71(2):400–8. PMID: 7841061.

10. Nikolich-Zugich J., Fremont D.H., Miley M.J., Messaoudi I. The role of MHC polymorphism in anti-microbial resistance. Microbes Infect 2004;6(5):501–12. DOI: 10.1016/j.micinf.2004.01.006. PMID: 15109966.

11. Хаитов Р.М., Алексеев Л.П. Физиологическая роль главного комплекса гистосовместимости человека. Иммунология 2001;(3):4–11. [Khaitov R.M., Alekseev L.P. Physiological role of the human major histocompatibility complex. Immunologiya = Immunology 2001;(3):4–11. (In Russ.)].

12. Simons M.J., Day N.E., Wee G.B. et al. Nasopharyngeal carcinoma immunogenetic studies of Southeast Asian ethnic groups with high and low risk for the tumor. Cancer Res 1974;34(5):1192–5. PMID: 4842362.

13. Wang R., Hu Y., Yindom L.M. et al. Association analysis between HLA-A, -B, -C, -DRB1, and DQB1 with nasopharyngeal carcinoma among a Han population in Northwestern China. Hum Immunol 2014;75(3):197–202. DOI: 10.1016/j.humimm.2013.12.015. PMID: 24389314.

14. Li X., Fasano R., Wang E. et al. HLA associations with nasopharyngeal carcinoma. Curr Mol Med 2009;9(6):751–65. PMID: 19689302.

15. Bateman A.C., Howell W.M. Human leukocyte antigens and cancer: is it in our genes? J Pathol 1999;188(3):231–6. DOI: 10.1002/(SICI)1096-9896(199907) 188:33.0.CO;2-A. PMID: 10419588.

16. Lung M.L., Cheung A.K., Ko J.M. et al. The interplay of host genetic factors and Epstein–Barr virus in the development of nasopharyngeal carcinoma. Chin J Cancer 2014;33(11):556–68. DOI: 10.5732/cjc.014.10170. PMID: 25367335.

17. Rubicz R., Yolken R., Drigalenko E. et al. A genome-wide integrative genomic study localizes genetic factors influencing antibodies against Epstein–Barr virus nuclear antigen 1 (EBNA-1). PLoS Genet 2013;9(1):e1003147. DOI: 10.1371/journal.pgen.1003147. PMID: 23326239.

18. Гурцевич В.Э., Сенюта Н.Б., Ломая М.В. и др. Серологические маркеры вируса Эпштейна–Барр у больных раком носоглотки в случаях невыявленного первичного очага. Вопросы вирусологии 2016;(61):205–12. [Gurtsevich V.E., Senyuta N.B., Lomaya M.V. et al. Diagnostic value of the Epstein–Barr virus serological markers in patients with nasopharyngeal carcinoma in cases of undetectable primary tumor location. Voprosy virusologii = Problems of Virology 2016;(61):205–12. (In Russ.)].

19. Гурцевич В.Э., Степина В.Н., Сенюта Н.Б. и др. Гуморальный иммунный ответ к вирусу Эпштейна–Барр в диагностике рака носоглотки (обзор литературы и 30-летний опыт собственных исследований). Вестник РОНЦ им. Н.Н. Блохина РАМН 2011;(22): 20–30. [Gurtsevich V.E., Stepina V.N., Senyuta N.B. et al. Humoral immune response to Epstein–Barr virus in the diagnosis of nasopharyngeal carcinoma (literature review and 30-year authors own experience). Vestnik RONC im. N.N. Blokhina RAMN = Journal of N.N. Blokhin Russian Cancer Research Center of RAMS 2011;(22):20–30. (In Russ.)].

20. Miller S.A., Dykes D., Polesky H.F. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 1988;16(3):1215. PMID: 3344216.

21. Karanikiotis C., Danilidis M., Karyotis N. et al. HLA Class II alleles and the presence of circulating Epstein–Barr virus DNA in Greek patients with nasopharyngeal carcinoma. Strahlenther Onkol 2008;184(6):325–31. DOI: 10.1007/ s00066-008-1816-4. PMID: 18535809.

22. Zhou J.F., Guo S.S., Yu.P. Association study on HLA-DP and -DQ allelic polymorphisms and nasopharyngeal carcinoma in the Han nationality in Hunan province. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 2003;20(3):262–4. PMID: 12778461.

23. Makni H., Daoud J., Ben Salah H. et al. HLA association with nasopharyngeal carcinoma in Southern Tunisia. Mol Biol Rep 2010;37(5):2533–9. DOI: 10.1007/s11033-009-9769-y. PMID: 19714482.

24. Yang H., Yu K., Zhang R. et al. The HLA-DRB1 allele polymorphisms and nasopharyngeal carcinoma. Tumor Biol 2016;37(6):7119–28. DOI: 10.1007/s13277-016-5051-9. PMID: 27059731.

25. Yao K., Yang S., Shen J. et al. HLA-DRB1 allele polymorphism and nasopharyngeal carcinoma risk: a meta-analysis. Eur Arch Otorhinolaryngol 2017;274(1):297–303. DOI: 10.1007/s00405-016-4264-2. PMID: 27535842.

26. Geng X.T., Hu Y.H., Dong T., Wang R.Z. Associations of human leukocyte antigenDRB1 alleles with nasopharyngeal carcinoma and its clinical significance in Xinjiang Uyghur autonomous region of China. Chin Med J (Engl) 2016;129(11):1347–54. DOI: 10.4103/0366-6999.182833. PMID: 27231174.

27. Burt R.D., Vaughan T.L., McKnight B. et al. Associations between human leukocyte antigen type and nasopharyngeal carcinoma in Caucasians in the United States. Cancer Epidemiol Biomarkers Prev 1996;5(11):879–87. PMID: 8922295.

28. Zhao D.T., Liao H.Y., Zhang X. et al. Human leucocyte antigen alleles and haplotypes and their associations with antinuclear antibodies features in Chinese patients with primary biliary cirrhosis. Liver Int 2014;34(2):220–6. DOI: 10.1111/liv.12236. PMID: 23809616.

29. Baharlou R., Faghihi-Kashani A., Faraji F. et al. HLA-DRB1 alleles of susceptibility and protection in Iranians with autoimmune hepatitis. Hum Immunol 2016;77(4):330–5. DOI: 10.1016/j.humimm.2016.01.007. PMID: 26780502.

30. Vasconcelos C., Carvalho C., Leal B. et al. HLA in Portuguese systemic lupus erythematosus patients and their relation to clinical features. Ann N Y Acad Sci 2009;1173:575–80. DOI: 10.1111/j.1749-6632.2009.04873.x. PMID: 19758202.

31. Rodríguez-Ventura A.L., YamamotoFurusho J.K., Coyote N. et al. HLADRB1*08 allele may help to distinguish between type 1 diabetes mellitus and type 2 diabetes mellitus in Mexican children. Pediatr Diabetes 2007;8(1):5–10. DOI: 10.1111/j.1399-5448.2006.00221.x. PMID: 17341285.

32. Junge N., Tiedau M., Verboom M. et al. Human leucocyte antigens and pediatric autoimmune liver disease: diagnosis and prognosis. Eur J Pediatr 2016;175(4):527–37. DOI: 10.1007/s00431-015-2662-x. PMID: 26567543.

33. Beradhi B.S., Flesch B.K., Hansen M.P. et al. HLA class II differentiates between thyroid and polyglandular autoimmunity. Horm Metab Res 2016;48(4):232–7. DOI: 10.1055/s-0035-1559622. PMID: 26317691.

34. Giat E., Ehrenfeld M., Shoenfeld Y. Cancer and autoimmune diseases. Autoimmun Rev 2017;16(20):1049–57. DOI: 10.1016/ 17.07.022. PMID: 28778707.

35. Madeleine M.M., Finch J.L., Lynch C.F. et al. HPV-related cancers after solid organ transplantation in the United States. Am J Transplant 2013;13(12):3202–9. DOI: 10.1111/ajt.12472. PMID: 24119294.


Review

For citations:


Senyuta N.B., Boldyreva M.N., Goncharova E.V., Maximovich D.M., Shcherbak L.N., Dushenkina T.E., Gurtsevitch V.E. HLA II genes distribution in Epstein–Barr virus-associated nasopharyngeal carcinoma and other tumors of the oral cavity patients in Russia. Advances in Molecular Oncology. 2018;5(1):43-52. (In Russ.) https://doi.org/10.17650/2313-805X-2018-5-1-43-52

Views: 782


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2313-805X (Print)
ISSN 2413-3787 (Online)