Preview

Успехи молекулярной онкологии

Расширенный поиск

Факторы роста, их рецепторы и нижележащие сигнальные белки: от эксперимента к клинике

https://doi.org/10.17650/2313-805X.2014.1.1.27-35

Полный текст:

Аннотация

В обзоре представлены основополагающие данные современной литературы и результаты собственных многолетних исследований роли ауто / паракринных факторов роста, их рецепторов и некоторых нижележащих сигнальных белков (PI3K, Akt, NF-κB) в клиническом течении, прогнозе и формировании гормональной и / или лекарственной чувствительности различных опухолей человека. Суммированы также данные о ключевых таргетных препаратах, направленных на подавление различных компонентов сигнальных путей факторов роста; критериях оценки индивидуальной чувствительности к этим препаратам, в том числе с использованием современных молекулярно-биологических технологий.

Об авторах

Е. С. Герштейн
ФГБУ «РОНЦ им. Н. Н. Блохина» РАМН, Москва
Россия


Н. Е. Кушлинский
ФГБУ «РОНЦ им. Н. Н. Блохина» РАМН, Москва
Россия


Список литературы

1. Кушлинский Н.Е., Герштейн Е.С., Овчинникова Л.К. и др. Молекулярные маркеры опухолей. Бюлл эксп биол мед 2009;147(8):199–208.

2. Herbst R.S. Review of epidermal growth factor receptor biology. Int J Radiat Oncol Biol Phys 2004;59(2 Suppl):21–6.

3. Герштейн Е.С., Кушлинский Н.Е., Давыдов М.И. Рецепторы семейства c- erbB как мишени молекулярно-направленной противоопухолевой терапии: достижения, проблемы, перспективы. Молекулярная медицина 2010;(4):5–10.

4. Montero J.C., Rodriguez-Barrueco R., Ocana A. et al. Neuregulins and cancer. Clin Cancer Res 2008;14(11):3237–41.

5. Ross J.S., Gray G.S. Targeted therapy for cancer: the HER-2/neu and Herceptin story. Clin Leadersh Manag Rev 2003;17(6): 333–40.

6. Friedlander E., Barok M., Szollosi J. et al. ErbB-directed immunotherapy: antibodies in current practice and promising new agents. Immunol Lett 2008;116(2):126–40.

7. Chua Y.J., Cunningham D. Panitumumab. Drugs Today (Barc) 2006;42(11):711–9.

8. Gialeli C., Kletsas D., Mavroudis D. et al. Targeting epidermal growth factor receptor in solid tumors: critical evaluation of the biological importance of therapeutic monoclonal antibodies. Curr Med Chem 2009;16(29):3797–804.

9. Harari P.M. Epidermal growth factor receptor inhibition strategies in oncology. Endocr Relat Cancer 2004;11(4):689–708.

10. Bose P., Ozer H. Neratinib: an oral, irreversible dual EGFR/HER2 inhibitor for breast and non-small cell lung cancer. Expert Opin Investig Drugs 2009;18(11):1735–51.

11. Tiseo M., Loprevite M., Ardizzoni A. Epidermal growth factor receptor inhibitors: a new prospective in the treatment of lung cancer. Curr Med Chem Anticancer Agents 2004;4(2):139–48.

12. Astsaturov I., Cohen R.B., Harari P.M. EGFR-targeting monoclonal antibodies in head and neck cancer. Curr Cancer Drug Targets 2006;6(8):691–710.

13. Brockstein B., Lacouture M., Agulnik M. The role of inhibitors of the epidermal growth factor in management of head and neck cancer. J Natl Compr Canc Netw 2008;6(7):696–706.

14. Burtness B. Clinical use of monoclonal antibodies to the epidermal growth factor receptor in colorectal cancer. Oncology (Williston Park) 2007;21(8):964–70; discussion 970, 974, 976–967.

15. Modjtahedi H., Essapen S. Epidermal growth factor receptor inhibitors in cancer treatment: advances, challenges and opportunities. Anticancer Drugs 2009;20(10):851–5.

16. Gerber D.E. EGFR Inhibition in the Treatment of Non-Small Cell Lung Cancer. Drug Dev Res 2008;69(6):359–72.

17. Chu E. Molecular biomarker development for anti-EGFR therapy: moving beyond EGFR expression. Clin Colorectal Cancer 2008;7(3):162.

18. Pesek M., Benesova L., Belsanova B. et al. Dominance of EGFR and insignificant KRAS mutations in prediction of tyrosinekinase therapy for NSCLC patients stratified by tumor subtype and smoking status. Anticancer Res 2009;29(7):2767–73.

19. Zhao Z.R., Wang J.F., Lin Y.B. et al. Mutation abundance affects the efficacy of EGFR tyrosine kinase inhibitor readministration in non-small-cell lung cancer with acquired resistance. Med Oncol 2014;31(1):810.

20. Antonicelli A., Cafarotti S., Indini A. et al. EGFR-targeted therapy for non-small cell lung cancer: focus on EGFR oncogenic mutation. Int J Med Sci 2013;10(3):320–30.

21. Al Dayel F.. EGFR mutation testing in non-small cell lung cancer (NSCLC). J Infect Public Health 2013;5 Suppl 1: S31–34.

22. Plesec T.P., Hunt J.L. KRAS mutation testing in colorectal cancer. Adv Anat Pathol 2009;16(4):196–203.

23. Neumann J., Wehweck L., Maatz S. et al. Alterations in the EGFR pathway coincide in colorectal cancer and impact on prognosis. Virchows Arch 2013;463(4):509–23.

24. Okada Y., Miyamoto H., Goji T. et al. Biomarkers for predicting the efficacy of anti-epidermal growth factor receptor antibody in the treatment of colorectal cancer. Digestion 2014;89(1):18–23.

25. Sartore-Bianchi A., Di Nicolantonio F., Nichelatti M. et al. Multi-determinants analysis of molecular alterations for predicting clinical benefit to EGFR-targeted monoclonal antibodies in colorectal cancer. PLoS One 2009;4(10):e7287.

26. Miles D.W. Update on HER-2 as a target for cancer therapy: herceptin in the clinical setting. Breast Cancer Res 2001;3(6):380–4.

27. Brunelli M., Manfrin E., Martignoni G. et al. HER-2/neu assessment in breast cancer using the original FDA and new ASCO/CAP guideline recommendations: impact on selecting patients for herceptin therapy. Am J Clin Pathol 2008;129(6):907–11.

28. Duffy M.J. Predictive markers in breast and other cancers: a review. Clin Chem 2005;51(3):494–503.

29. Goldhirsch A., Glick J.H., Gelber R.D. et al. Meeting highlights: international expert consensus on the primary therapy of early breast cancer 2005. Ann Oncol 2005;16(10):1569–83.

30. Ardizzoni A., Cafferata M.A., Paganuzzi M. et al. Study of pretreatment serum levels of HER-2/neu oncoprotein as a prognostic and predictive factor in patients with advanced nonsmall cell lung carcinoma. Cancer 2001;92(7): 1896–904.

31. Carney W.P., Neumann R., Lipton A. et al. Potential clinical utility of serum HER- 2/neu oncoprotein concentrations in patients with breast cancer. Clin Chem 2003;49(10):1579–98.

32. Kushlinskii N.E., Shirokii V.P., Gershtein E.S. et al. Soluble fragment of HER2/neu receptor in the serum of patients with breast cancer with different levels of this protein expression in the tumor. Bull Exp Biol Med 2007;143(4):449–51.

33. Nahta R., Esteva F.J. Herceptin: mechanisms of action and resistance. Cancer Lett 2006;232(2):123–38.

34. Biswas D.K., Shi Q., Baily S. et al. NFkappa B activation in human breast cancer specimens and its role in cell proliferation and apoptosis. Proc Natl Acad Sci USA 2004;101(27):10137–42.

35. Adli M., Baldwin A.S. IKK-i/IKKepsilon controls constitutive, cancer cell-associated NF-kappaB activity via regulation of Ser-536 p65/RelA phosphorylation. J Biol Chem 2006;281(37):26976–84.

36. Shcherbakov A.M., Gershtein E.S., Anurova O.A. et al. Activated proteinkinase B in breast cancer. Bull Exp Biol Med 2005;139(5):608–10.

37. Gershtein E.S., Scherbakov A.M., Anurova O.A. et al. Phosphorylated Akt1 in human breast cancer measured by direct sandwich enzyme-linked immunosorbent assay: Correlation with clinicopathological features and tumor VEGF-signaling system component levels. Int J Biol Markers 2006;21(1):12–9.

38. Gershtein E.S., Scherbakov A.M., Shatskaya V.A. et al. Phosphatidylinositol 3-kinase/AKT signalling pathway components in human breast cancer: clinicopathological correlations. Anticancer Res 2007;27(4A):1777–82.

39. Gershtein E.S., Platova A.M., Scherbakov A.M. et al. Comparative ELISA study of NF-kappaB p65 and p50, its inhibitor IkappaB, and upstream effector protein kinase Akt1 expression and activity in the tumors of breast cancer patients. Tumor Biology 2010;31(Suppl. 1):39–40.

40. Gershtein E.S., Scherbakov A.M., Platova A.M. et al. The expression and DNAbinding activity of NF-κB nuclear transcription factor in the tumors of patients with breast cancer. Bull Exp Biol Med 2010;150(1):71–4.

41. Zhou Y., Eppenberger-Castori S., Marx C. et al. Activation of nuclear factor-kappaB (NFkappaB) identifies a high-risk subset of hormone-dependent breast cancers. Int J Biochem Cell Biol 2005;37(5):1130–44.

42. Liu C., Zhou S., Ke C.S. et al. [Activation and prognostic significance of AKT, NFkappaB and STAT3 in breast cancer with lymph node metastasis and estrogen receptor expression]. Ai Zheng 2007;26(9):929–36.

43. Zhou Y., Yau C., Gray J.W. et al. Enhanced NF kappa B and AP-1 transcriptional activity associated with antiestrogen resistant breast cancer. BMC Cancer 2007;7:59.

44. Van Laere S.J., Van der Auwera I., Van den Eynden G.G. et al. NF-kappaB activation in inflammatory breast cancer is associated with oestrogen receptor downregulation, secondary to EGFR and/or ErbB2 overexpression and MAPK hyperactivation. Br J Cancer 2007;97(5):659–69.

45. Wu J.T., Kral J.G. The NF-kappaB/ IkappaB signaling system: a molecular target in breast cancer therapy. J Surg Res 2005;123(1):158–69.

46. Rahman K.M., Ali S., Aboukameel A. et al. Inactivation of NF-kappaB by 3,3'-diindolylmethane contributes to increased apoptosis induced by chemotherapeutic agent in breast cancer cells. Mol Cancer Ther 2007;6(10):2757–65.

47. Kim H.J., Hawke N., Baldwin A.S. NF-kappaB and IKK as therapeutic targets in cancer. Cell Death Differ 2006;13(5):738–47.

48. Zhou Y., Eppenberger-Castori S., Eppenberger U. et al. The NF-kappaB pathway and endocrine-resistant breast cancer. Endocr Relat Cancer 2005;12 Suppl 1:S37–46.

49. Cardoso F., Ross J.S., Picart M.J. et al. Targeting the ubiquitin-proteasome pathway in breast cancer. Clin Breast Cancer 2004;5(2):148–57.

50. Pajak B., Gajkowska B., Orzechowski A. Molecular basis of parthenolide-dependent proapoptotic activity in cancer cells. Folia Histochem Cytobiol 2008;46(2):129–35.

51. Jenkins C., Hewamana S., Gilkes A. et al. Nuclear factor-kappaB as a potential therapeutic target for the novel cytotoxic agent LC-1 in acute myeloid leukaemia. Br J Haematol 2008;143(5):661–71.

52. Conde E., Angulo B., Tang M. et al. olecular context of the EGFR mutations: evidence for the activation of mTOR/S6K signaling. Clin Cancer Res 2006;12(3 Pt 1):710–7.

53. Widakowich C., Dinh P., de Azambuja E. et al. HER-2 positive breast cancer: what else beyond trastuzumab-based therapy? Anticancer Agents Med Chem 2008;8(5):488–96.

54. Saunders P., Cisterne A., Weiss J. et al. The mammalian target of rapamycin inhibitor RAD001 (everolimus) synergizes with chemotherapeutic agents, ionizing radiation and proteasome inhibitors in pre-B acute lymphocytic leukemia. Haematologica 2010;96(1):69–77.


Для цитирования:


Герштейн Е.С., Кушлинский Н.Е. Факторы роста, их рецепторы и нижележащие сигнальные белки: от эксперимента к клинике. Успехи молекулярной онкологии. 2014;1(1):27-35. https://doi.org/10.17650/2313-805X.2014.1.1.27-35

For citation:


Gershtein E.S., Kushlinsky N.E. Growth factors, their receptors and down-stream signaling proteins in human tumors: from experiment to clinical practice. Advances in molecular oncology. 2014;1(1):27-35. (In Russ.) https://doi.org/10.17650/2313-805X.2014.1.1.27-35

Просмотров: 215


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2313-805X (Print)
ISSN 2413-3787 (Online)