Preview

Успехи молекулярной онкологии

Расширенный поиск

ИЗУЧЕНИЕ РОЛИ МИКРОРНК ПРИ АДЕНОМЕ ГИПОФИЗА

https://doi.org/10.17650/2313-805X-2018-5-2-8-15

Аннотация

МикроРНК представляют собой новый класс малых некодирующих РНК длиной 18–22 нуклеотида, которые играют решающую роль в качестве посттранскрипционных регуляторов экспрессии генов. Из-за большого количества регулируемых генов микроРНК участвуют во многих клеточных процессах. Исследование нарушений экспрессии генов-мишеней микроРНК, часто связанных с изменениями важных биологических характеристик, дает представление о роли микроРНК в онкогенезе. Новые данные свидетельствуют о том, что аберрантная экспрессия микроРНК или дисрегуляция эндогенных микроРНК влияет на возникновение и развитие опухолей, в том числе аденом гипофиза. В настоящем обзоре оценена значимость некоторых микроРНК в патологии аденомы гипофиза, а также представлены данные, касающиеся изучения микроРНК в качестве терапевтических мишеней и новых биомаркеров.

Об авторах

И. Ф. Гареев
ФГБОУ ВО «Башкирский государственный медицинский университет» Минздрава России
Россия

Ильгиз Фанилевич Гареев

Республика Башкортостан, Уфа 450008, ул. Ленина, 3



О. А. Бейлерли
ФГБОУ ВО «Башкирский государственный медицинский университет» Минздрава России
Россия

Республика Башкортостан, Уфа 450008, ул. Ленина, 3



Список литературы

1. Di Ieva A., Rotondo F., Syro L. V. et al. Aggressive pituitary adenomas – diagnosis and emerging treatments. Nat Rev Endocrinol 2014;10(7):423–35. DOI: 10.1038/nrendo.2014.64. PMID: 24821329.

2. Aflorei E. D., Korbonits M. Epidemiology and etiopathogenesis of pituitary adenomas. J Neurooncol 2014;117(3):379–94. DOI: 10.1007/s11060-013-1354-5. PMID: 24481996.

3. Ambros V. The functions of animal microRNAs. Nature 2004;431(7006):350–5. DOI: 10.1038/nature02871. PMID: 15372042.

4. Gartel A. L., Kandel E. S. MiRNAs: little known mediators of oncogenesis. Semin Cancer Biol 2008;18(2):103–10. DOI: 10.1016/j.semcancer.2008.01.008. PMID: 18295504.

5. Zhang J. X., Song W., Chen Z. H. et al. Prognostic and predictive value of a microRNA signature in stage II colon cancer: a microRNA expression analysis. Lancet Oncol 2013;14(13):1295–306. DOI: 10.1016/S1470-2045(13)70491-1. PMID: 24239208.

6. Wienholds E., Kloosterman W. P., Miska E. et al. MicroRNA expression in zebrafish embryonic development. Science 2005;309(5732):310–1. DOI: 10.1126/science.1114519. PMID: 15919954.

7. Zhang Z., Florez S., Gutierrez-Hartmann A. et al. MicroRNAs regulate pituitary development, and microRNA 26b specifically targets lymphoid enhancer factor 1 (Lef-1), which modulates pituitary transcription factor 1 (Pit-1) expression. J Biol Chem 2010;285(45):34718–28. DOI: 10.1074/jbc.M110.126441. PMID: 20807761.

8. Zhang N., Lin J. K., Chen J. et al. MicroRNA 375 mediates the signaling pathway of corticotropinreleasing factor (CRF) regulating pro-opiomelanocortin (POMC) expression by targeting mitogenactivated protein kinase 8. J Biol Chem 2013;288(15):10361–73. DOI: 10.1074/jbc.M112.425504. PMID: 23430746.

9. Nemoto T., Mano A., Shibasaki T. MiR-449a contributes to glucocorticoidinduced CRF-R1 downregulation in the pituitary during stress. Mol Endocrinol 2013;27(10):1593–602. DOI: 10.1210/me.2012-1357. PMID: 23893957.

10. Ye R. S., Xi Q. Y., Qi Q. et al. Differentially expressed miRNAs after GnRH treatment and their potential roles in FSH regulation in porcine anterior pituitary cell. PLoS One 2013;8(2):57–156. DOI: 10.1371/journal.pone.0057156. PMID: 23451171.

11. Godoy J., Nishimura M., Webster N. J. Gonadotropin-releasing hormone induces miR-132 and miR-212 to regulate cellular morphology and migration in immortalized LbetaT2 pituitary gonadotrope cells. Mol Endocrinol 2011;25(5):810–20. DOI: 10.1210/me.2010-0352. PMID: 21372146.

12. Schneeberger M., Altirriba J., García A. et al. Deletion of miRNA processing enzyme Dicer in POMC-expressing cells leads to pituitary dysfunction, neurodegeneration and development of obesity. Mol Metab 2012;2(2):74–85. DOI: 10.1016/j.molmet.2012.10.001. PMID: 24199146.

13. Wang H., Graham I., Hastings R. et al. Gonadotrope-specific deletion of Dicer results in severely suppressed gonadotropins and fertility defects. J Biol Chem 2015;290(5):2699–714. DOI: 10.1074/jbc.M114.621565. PMID:25525274.

14. Hsueh S. Y., Hsueh A. J. Human stresscopin and stresscopin-related peptide are selective ligands for the type 2 corticotropinreleasing hormone receptor. Nat Med 2001;7(5):605–11.DOI: 10.1038/87936. PMID: 11329063.

15. Savulescu D., Feng J., Ping Y. S. et al. Gonadotropin-releasing hormone- regulated prohibitin mediates apoptosis of the gonadotrope cells. Mol Endocrinol 2013;27(11):1856–70. DOI: 10.1210/me.2013-1210. PMID: 24085822.

16. Choi J. W., Kang S. M., Lee Y. et al. MicroRNA profiling in the mouse hypothalamus reveals oxytocin-regulating micro RNA. J Neurochem 2013;126(3):331–37. DOI:10.1111/jnc.12308. PMID: 23682839.

17. Hu Y., Wang Q., Wang Z. et al. Circulating microRNA profiles and the identification of miR-593 and miR-511 which directly target the PROP1 gene in children with combined pituitary hormone deficiency. Int J Mol Med 2015;35(2):358–66. DOI: 10.3892/ijmm.2014.2016. PMID: 25434367.

18. Deladoey J., Fluck C., Buyukgebiz A. et al. “Hot spot” in the PROP1 gene responsible for combined pituitary hormone deficiency. J Clin Endocrinol Metab 1999;84(5): 1645–50. DOI: 10.1210/jcem.84.5.5681. PMID: 10323394.

19. Jiang X., Zhang X. The molecular pathogenesis of pituitary adenomas: an update. Endocrinol Metab (Seoul) 2013;28(4):245–54. DOI: 10.3803/EnM. 2013.28.4.245. PMID: 24396688.

20. Quereda V., Malumbres M. Cell cycle control of pituitary development and disease. J Mol Endocrinol 2009;42(2):75–86. DOI: 10.1677/JME-08-0146. PMID: 18987159.

21. Gentilin E., Di Pasquale C., Gagliano T. et al. Protein Kinase C Delta restrains growth in ACTH-secreting pituitary adenoma cells. Mol Cell Endocrinol 2016;419:252–8. DOI: 10.1016/j.beem.2016.10.002. PMID: 26522132.

22. Bottoni A., Piccin D., Tagliati F. et al. MiR-15a and miR-16–1 down-regulation in pituitary adenomas. J Cell Physiol 2005;204(1):280–5. DOI: 10.1002/jcp.20282. PMID: 15648093.

23. Bottoni A., Zatelli M. C., Ferracin M. et al. Identification of differentially expressed microRNAs by microarray: a possible role for microRNA genes in pituitary adenomas. J Cell Physiol 2007;210(2): 370–7.DOI: 10.1002/jcp.20832. PMID: 17111382.

24. D’Angelo D., Palmieri D., Mussnich P. et al. Altered microRNA expression profile in human pituitary GH adenomas: downregulation of miRNA targeting HMGA1, HMGA2, and E2F1. J Clin Endocrinol Metab 2012;97(7):1128–38. DOI: 10.1210/jc.2011–3482. PMID: 22564666.

25. Liang S., Chen L., Huang H., Zhi D. The experimental study of miRNA in pituitary adenomas. Turk Neurosurg 2013;23(6): 721–7. DOI: 10.5137/1019-5149.JTN.7425–12.1. PMID: 24310454.

26. Leone V., Langella C., D’Angelo D. et al. Mir-23b and miR-130b expression is downregulated in pituitary adenomas. Mol Cell Endocrinol 2014;390(1–2):1–7. DOI: 10.1016/j.mce.2014.03.002. PMID: 24681352.

27. Fan X., Mao Z., He D. et al. Expression of somatostatin receptor subtype 2 in growth hormonesecreting pituitary adenoma and the regulation of miR-185. J Endocrinol Invest 2015;38(10):1117–28. DOI: 10.1007/s40618-015-0306-7. PMID: 26036598.

28. Leontiou C. A., Gueorguiev M., van der Spuy J. et al. The role of the aryl hydrocarbon receptor-interacting protein gene in familial and sporadic pituitary adenomas. J Clin Endocrinol Metab 2008;93(6):2390–401. DOI: 10.1210/jc.2007–2611. PMID: 18381572.

29. Dénes J., Kasuki L., Trivellin G. et al. Regulation of arylhydrocarbon receptor interacting protein (AIP) protein expression by MiR-34a in sporadic somatotropinomas. PLoS One 2015;10:107–17. DOI: 10.1371/journal.pone.0117107.

30. Palumbo T., Faucz F. R., Azevedo M. et al. Functional screen analysis reveals miR-26b and miR-128 as central regulators of pituitary somatomammotrophic tumor growth through activation of the PTEN-AKT pathway. Oncogene 2013;32(13):1651–9. DOI: 10.1038/onc.2012.190. PMID: 22614013.

31. Amaral F. C., Torres N., Saggioro F. et al. MicroRNAs differentially expressed in ACTH-secreting pituitary tumors. J Clin Endocrinol Metab 2009;94(1): 320–3. DOI: 10.1210/jc.2008-1451. PMID: 18840638.

32. Stilling G., Sun Z., Zhang S. et al. MicroRNA expression in ACTH producing pituitary tumors: up-regulation of microRNA-122 and -493 in pituitary carcinomas. Endocrine 2010;38(1):67–75. DOI: 10.1007/s12020-010-9346-0. PMID: 20960104.

33. Gentilin E., Tagliati F., Filieri C. et al. MiR-26a plays an important role in cell cycle regulation in ACTH-secreting pituitary adenomas by modulating protein kinase Cδ. Endocrinology 2013;154(5): 1690–700. DOI: 10.1210/en.2012-2070. PMID: 23525216.

34. Chen Y. X., Li Q., Wang C. D. et al. Differential expression analysis of prolactinomarelated microRNAs. Zhonghua Yi Xue Za Zhi 2012;92(5):320–3. PMID: 22490835.

35. Liang H. Q., Wang R. J., Diao C. F. et al. The PTTG1-targeting miRNAs miR-329, miR-300, miR-381, and miR-655 inhibit pituitary tumor cell tumorigenesis and are involved in a p53/PTTG1 regulation feedback loop. Oncotarget 2015;6(30):29413–27. DOI: 10.18632/oncotarget.5003. PMID: 26320179.

36. Butz H., Likó I., Czirják S. et al. MicroRNA profile indicates downregulation of the TGFβ pathway in sporadic nonfunctioning pituitary adenomas. Pituitary 2011;14(2):112–24. DOI: 10.1007/s11102-010-0268-x. PMID: 21063788.

37. Butz H., Likó I., Czirják S. et al. Downregulation of Wee1 kinase by a specific subset of microRNA in human sporadic pituitary adenomas. J Clin Endocrinol Metab 2010;95(10):181–91. DOI: 10.1210/jc.2010–0581. PMID: 20668041.

38. Cheng A. M., Byrom M. W., Shelton J., Ford L. P. Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res 2005;33(4):1290–7. DOI: 10.1093/nar/gki200. PMID: 15741182.

39. Trivellin G., Igreja S., Garcia E. et al. MiR-107 inhibits the expression of aryl hydrocarbon receptor interacting protein (AIP) and is potentially involved in pituitary tumorigenesis. Endocr Abstr 2011;25. DOI: 10.1152/ajpendo.00546.2011.

40. Fan X., Paetau A., Aalto Y. et al. Gain of chromosome 3 and loss of 13q are frequent alterations in pituitary adenomas. Cancer Genet Cytogenet 2001;128(2):97–103. DOI: 10.1016/S0165-4608(01)00398-3. PMID: 11463446.

41. Zatelli M. C., degli Uberti EC. MicroRNAs and possible role in pituitary adenomas. Semin Reprod Med 2008;26(6):453–60. DOI: 10.1055/s-0028-1096125. PMID: 18951327.

42. Motoyama K., Inoue H., Nakamura Y. et al. Clinical significance of high mobility group A2 in human gastric cancer and its relationship to let-7 microRNA family. Clin Cancer Res 2008;14(8):2334–40. DOI: 10.1158/1078-0432.CCR-07–4667. PMID: 18413822.

43. Miyazawa J., Mitoro A., Kawashiri S. et al. Expression of mesenchyme-specific gene HMGA2 in squamous cell carcinomas of the oral cavity. Cancer Res 2004;64(6): 2024–9. DOI: 10.1158/0008-5472. PMID: 15026339.

44. Qian Z. R., Sano T., Yoshimoto K. et al. Tumor-specific downregulation and methylation of the CDH13 (H-cadherin) and CDH1 (E-cadherin) genes correlate with aggressiveness of human pituitary adenomas. Mod Pathol 2007;20(12):1269–77. DOI: 10.1038/modpathol.3800965. PMID: 17873891.

45. Mao Z. G., He D. S., Zhou J. et al. Differential expression of microRNAs in GH-secreting pituitary adenomas. Diagn Pathol 2010;5:79. DOI: 10.1186/1746-1596-5-79. PMID: 21138567.

46. Salehi F., Kovacs K., Scheithauer B. W. et al. Pituitary tumor-transforming gene in endocrine and other neoplasms: a review and update. Endocr Relat Cancer 2008;15(3):721–43. DOI: 10.1677/ERC08-0012. PMID: 18753362.

47. Guo B. H., Feng Y., Zhang R. et al. Bmi-1 promotes invasion and metastasis, and its elevated expression is correlated with an advanced stage of breast cancer. Mol Cancer 2011;10(1):10. DOI: 10.1186/1476-4598-10-10. PMID: 21276221.

48. Shi X., Tao B., He H. et al. MicroRNAsbased network: a novel therapeutic agent in pituitary adenoma. Med Hypotheses 2012;78(3):380–4. DOI: 10.1016/j.mehy.2011.12.001. PMID: 22222153.

49. Zen K., Zhang C. Y. Circulating microRNAs: a novel class of biomarkers to diagnose and monitor human cancers. Med Res Rev 2012;32(2):326–48. DOI: 10.1002/med.20215. PMID: 22383180.

50. Wang Q., Li P., Li A. et al. Plasma specific miRNAs as predictive biomarkers for diagnosis and prognosis of glioma. J Exp Clin Cancer Res 2012;31:97. DOI: 10.1186/1756-9966-31-97. PMID: 23174013.

51. Kelly B. N., Haverstick D. M., Lee J. K. et al. Circulating microRNA as a biomarker of human growth hormone administration to patients. Drug Test Anal 2014;6(3):234–8. DOI: 10.1002/dta.1469. PMID: 23495241.

52. Jordan S. D., Kruger M., Willmes D. M. et al. Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism. Nat Cell Biol 2011;13(4):434–46. DOI: 10.1038/ncb2211. PMID: 21441927.

53. Henry J. C., Azevedo-Pouly A. C., Schmittgen T. D. MicroRNA replacement therapy for cancer. Pharm Res 2011;28(12): 3030–42. DOI: 10.1007/s11095-011-054. PMID: 21879389.

54. Мустафин Р. Н., Хуснутдинова Э. К. Эпигенетика канцерогенеза. Креативная хирургия и онкология 2017;7(3):60–7. DOI: 10.24060/2076-3093-2017-7-3-60-67.


Рецензия

Для цитирования:


Гареев И.Ф., Бейлерли О.А. ИЗУЧЕНИЕ РОЛИ МИКРОРНК ПРИ АДЕНОМЕ ГИПОФИЗА. Успехи молекулярной онкологии. 2018;5(2):8-15. https://doi.org/10.17650/2313-805X-2018-5-2-8-15

For citation:


Gareev I.F., Beylerli O.A. A STUDY OF THE ROLE OF MICRORNA IN PITUITARY ADENOMA. Advances in Molecular Oncology. 2018;5(2):8-15. (In Russ.) https://doi.org/10.17650/2313-805X-2018-5-2-8-15

Просмотров: 834


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2313-805X (Print)
ISSN 2413-3787 (Online)