SELECTIVE INHIBITION OF KRAS SIGNALING BY COMBINATION OF LOW DOSE RAPAMYCIN AND PACLITAXEL IN VIVO
https://doi.org/10.17650/2313-805X-2018-5-2-42-49
Abstract
Background. Therapy with compounds potentially capable to block KRAS oncogene signaling pathway is perspective direction in modern oncopharmacology. The aim of current study was to investigate effects of the combined treatment with rapamycin (RAP) and paclitaxel (PAC) in transgenic zebrafish (Danio rerio) with constant expression of mutant KRASV12 oncogene conjugated to green fluorescent protein (GFP) in epidermal cells. This strain has a modified phenotype due to epidermal hyperplasia and expression of GFP reporter at skin of embryos and adult fish.
Materials and methods. Fish embryos 6 hpf were exposed to 0.1 % DMSO solution (control) and various doses of the drugs or combinations thereof. GFP expression in epidermal cells was morphometrically measured at 72 hpf.
Results. Dose-related decrease in phenotypic changes up to complete epidermal normalization under RAP 50–400 nM treatment was observed. Treatment with nontoxic for embryos doses of PAC 50–250 nM increased fluorescence level in a dose-dependent manner, indicating an activation of KRAS signaling. Using of lower doses of RAP (10 and 25 nM) or PAC (10 nM) had no statistically significant effect on expression of transformed phenotype. Whereas combined treatment (RAP 10–25 nM and PAC 10–50 nM) dramatically decreased level of epidermal fluorescence and completely normalized phenotype of transgenic fish.
Conclusions. Thus, mutual potentiating effect of RAP and PAC in low doses which leads to selective inhibition of the KRAS signaling pathway was revealed, indicating the prospect of further studies of these drugs combination for targeted cancer therapy.
About the Authors
M. N. YurovaRussian Federation
68 Leningradskaya St., Pesochnyy Settlement, Saint Petersburg 197758
D. R. Safina
Russian Federation
2 Acad. I.V. Kurchatova Sq., Moscow 123182
I. V. Mizgirev
Russian Federation
68 Leningradskaya St., Pesochnyy Settlement, Saint Petersburg 197758
References
1. Bos J. L. Ras oncogenes in human cancer: a review. Cancer Res 1989;49(17):4682–9. PMID: 2547513.
2. Easton J. B., Houghton P. J. mTOR and cancer therapy. Oncogene 2006;25(48): 6436–46. DOI: 10.1038/sj.onc.1209886. PMID: 17041628.
3. Conciatori F., Ciuffreda L., Bazzichetto C. et al. mTOR cross-talk in cancer and potential for combination therapy. Cancers (Basel) 2018;10(1):E23. DOI: 10.3390/cancers10010023. PMID: 29351204.
4. Blagosklonny M. V. Rapalogs in cancer prevention: anti-aging or anticancer? Cancer Biol Ther 2012;13(14):1349–54. DOI: 10.4161/cbt.22859. PMID: 23151465.
5. Mondesire W. H., Jian W., Zhang H. et al. Targeting mammalian target of rapamycin synergistically enhances chemotherapyinduced cytotoxicity in breast cancer cells. Clin Cancer Res 2004;10(20):7031–42. DOI: 10.1158/1078-0432.CCR-04-0361. PMID: 15501983.
6. Shafer A., Zhou C., Gehrig P. A. et al. Rapamycin potentiates the effects of paclitaxel in endometrial cancer cells through inhibition of cell proliferation and induction of apoptosis. Int J Cancer 2010;126(5):1144–54. DOI: 10.1002/ijc.24837. PMID: 19688827.
7. Okano J., Rustgi A. K. Paclitaxel induces prolonged activation of the Ras/MEK/ERK pathway independently of activating the programmed cell death machinery. J Biol Chem 2001;276(22):19555–64. DOI: 10.1074/jbc.M011164200. PMID: 11278851.
8. Mabuchi S., Ohmichi M., Kimura A. et al. Inhibition of phosphorylation of BAD and Raf-1 by Akt sensitizes human ovarian cancer cells to paclitaxel. J Biol Chem 2002;277(36):33490–500. DOI: 10.1074/jbc.M204042200. PMID: 12087097.
9. Amatruda J. F., Patton E. E. Genetic models of cancer in zebrafish. Int Rev Cell Mol Biol 2008;271:1–34. DOI: 10.1016/S1937-6448(08)01201-X. PMID: 19081540.
10. Gong Z., Ju B., Wang X. et al. Green fluorescent protein expression in germ-line transmitted transgenic zebrafish under a stratified epithelial promoter from keratin 8. Dev Dyn 2002;223(2):204–15. DOI: 10.1002/dvdy.10051. PMID: 11836785.
11. Liu S., Leach S. D. Zebrafish models for cancer. Annu Rev Pathol 2011;6:71–93. DOI: 10.1146/annurev-pathol-011110- 130330. PMID: 21261518.
12. Astone M., Dankert E. N., Alam S. K., Hoeppner L. H. Fishing for cures: the alLURE of using zebrafish to develop precision oncology therapies. NPJ precision oncology 2017;1:39. DOI: 10.1038/s41698-017-0043-9. PMID: 29376139.
13. Mizgireuv I. V., Revskoy S. Y. Transplantable tumor lines generated in clonal zebrafish. Cancer Res 2006;66(6):3120–5. DOI: 10.1158/0008–5472.CAN-05-3800. PMID: 16540662.
14. Mizgirev I. V., Revskoy S. A new zebrafish model for experimental leukemia therapy. Cancer Biol Ther 2010;9(11):895–902. PMID: 20339318.
15. Kuscu C. Effect of rapamycin on early development of Zebrafish (Danio rerio). A thesis submitted to the Department of Molecular Biology and Genetics of Bilkent University, 2004. 77 p.
16. Nguyen A. T., Emelyanov A., Koh C. H. et al. An inducible KRASV12 transgenic zebrafish model for liver tumorigenesis and chemical drug screening. Dis Model Mech 2012;5(1):63–72. DOI: 10.1242/dmm.008367. PMID: 21903676.
17. Fernandez Del Ama L., Jones M., Walker P. et al. Reprofiling using a zebrafish melanoma model reveals drugs cooperating with targeted therapeutics. Oncotarget 2016;7(26):40348–61. DOI: 10.18632/oncotarget.9613. PMID: 27248171.
18. Lisse T. S., Middleton L. J., Pellegrini A. D. et al. Paclitaxel-induced epithelial damage and ectopic MMP-13 expression promotes neurotoxicity in zebrafish. Proc Natl Acad Sci USA 2016;113(15):E2189–98. DOI: 10.1073/pnas.1525096113. PMID: 27035978.
19. Wang H., Li D., Li X. et al. Mammalian target of rapamycin inhibitor RAD001 sensitizes endometrial cancer cells to paclitaxel-induced apoptosis via the induction of autophagy. Oncol Lett 2016;12(6):5029–35. DOI: 10.3892/ol.2016.5338. PMID: 28105210.
20. Zou H., Li L., Garcia Carcedo I. et al. Synergistic inhibition of colon cancer cell growth with nanoemulsion-loaded paclitaxel and PI3K/mTOR dual inhibitor BEZ235 through apoptosis. Int J Nanomedicine 2016;11:1947–58. DOI: 10.2147/IJN.S100744. PMID: 27226714.
21. Campone M., Levy V., Bourbouloux E. et al. Safety and pharmacokinetics of paclitaxel and the oral mTOR inhibitor everolimus in advanced solid tumours. Br J Cancer 2009;100(2):315–21. DOI: 10.1038/sj.bjc.6604851. PMID: 19127256.
22. Hurvitz S. A., Dalenc F., Campone M. et al. A Phase 2 study of everolimus combined with trastuzumab and paclitaxel in patients with HER2-overex-pressing advanced breast cancer that progressed during prior trastuzumab and taxane therapy. Breast Cancer Res Treat 2013;141:437–46. DOI: 10.1007/s10549-013-2689-5. PMID: 24101324.
Review
For citations:
Yurova M.N., Safina D.R., Mizgirev I.V. SELECTIVE INHIBITION OF KRAS SIGNALING BY COMBINATION OF LOW DOSE RAPAMYCIN AND PACLITAXEL IN VIVO. Advances in Molecular Oncology. 2018;5(2):42-49. (In Russ.) https://doi.org/10.17650/2313-805X-2018-5-2-42-49