Preview

Успехи молекулярной онкологии

Расширенный поиск

Влияние полиморфизма геномов онкогенных вирусов на риск возникновения опухолей человека и их специфическая профилактика

https://doi.org/10.17650/2313-805X.2014.1.1.36-47

Полный текст:

Аннотация

Многочисленными исследованиями доказано, что примерно 20 % всех опухолей человека являются новообразованиями инфекционной природы. Данный обзор представляет собой попытку суммировать современные представления о роли известных онкогенных вирусов и их генетических вариантов в риске возникновения опухолей человека, а также показать существующие меры специфической профилактики вирус-индуцированных опухолей. Уделено также внимание вопросам взаимодействия между вирусными белками и клеточными белками, включая опухолевые супрессоры, и оценена значимость такого взаимодействия для конкретных опухолеродных вирусов и ассоциированных с ними опухолей.

Об авторах

В. Э. Гурцевич
ФГБУ «РОНЦ им. Н. Н. Блохина» РАМН, Москва
Россия


Н. Б. Сенюта
ФГБУ «РОНЦ им. Н. Н. Блохина» РАМН, Москва
Россия


К. В. Смирнова
ФГБУ «РОНЦ им. Н. Н. Блохина» РАМН, Москва
Россия


Список литературы

1. Henle G., Henle W., Diehl V. Relation of Burkitt's tumor-associated herpes-type virus to infectious mononucleosis. Proc Natl Acad Sci USA 1968;59(1):94–101.

2. Burkitt D. Determining the climatic limitations of a children’s cancer common in Africa. Br Med J 1962;1019–1023.

3. Nonoyama M., Huang C.H., Pagano J.S. et al. DNA of Epstein-Barr virus detected in tissue of Burkitt's lymphoma and nasopharyngeal carcinoma. Proc Natl Acad Sci USA 1973;70(11):3265–3268.

4. Howe J.G., Shu M.D. Epstein–Barr virus small RNA (EBER) genes: unique transcription units that combine RNA polymerase II and III promoter elements. Cell 1989;2(57):825–834.

5. Brichacek B., Hirsh I., Sibl O., Vilikusova E., Vonka V. Presence of Epstein-Barr virus DNA in carcinomas of palatine tonsil. J Natl Cancer Inst 1984;72:809–815.

6. Leyvraz S., Henle W., Chahinian A. et al. Association of Epstein-Barr virus with thymic carcinoma. New Engl J Med 1985;312: 1296–1299.

7. Tsai C., Chen C., Hsu H-C. Expression of Epstein-Barr virus in carcinomas of major salivary glands: a strong association with lymphoepithelioma-like carcinoma. Hum Pathol 1996;27:258–262.

8. Brooks L.A., Lear A.L., Young L.S., Rickinson A.B. Transcripts from the Epstein– Barr virus BamHI A fragment are detectable in all three forms of virus latency. J Virol 1993;67(6):3182–3190.

9. Cohen J.I., Wang F., Mannick J., Kieff E. Epstein-Barr virus nuclear protein 2 is a key determinant of lymphocyte transformation. Proc Natl Acad Sci USA 1989;86: 9558– 9562.

10. Robertson E., Kieff E. Reducing the complexity of the transforming Epstein–Barr virus genome to 64 kilobase pairs. J Virol 1995;69(2):983–993.

11. Young L.S., Rickinson A.B. Epstein–Barr virus: 40 years on. Nat Rev Cancer 2004;4(10):757–768.

12. Fahraeus R., Rymo L., Rhim J. S., Klein G. Morphological transformation of human keratinocytes expressing the LMP gene of Epstein–Barr virus. Nature 1990;345:447–449.

13. Kaye K., Izumi K., Kieff E. Epstein–Barr virus latent membrane protein 1 is essential for B-lymphocyte growth transformation. Proc Natl Acad Sci USA 1993;90:9150–9154.

14. Kaye K., Izumi K., Johannsen E. et al. An Epstein-Barr virus that expresses only the first 231 LMP1 amino acids efficiently initiates primary B-lymphocyte growth transformation. J Virol 1999;73:10525–10530.

15. Kaye K., Izumi K., Mosialos G., Kieff E. The Epstein–Barr virus cytoplasmic carboxy terminus is essential for B-lymphocyte transformation; fibroblast co-cultivation complements a critical function within the terminal 155 residues. J Virol 1995;69:675– 683.

16. Mitchell T., Sugden B. Stimulation of NF-kB-mediated transcription by mutant derivatives of the latent membrane protein of Epstein–Barr virus. J Virol 1995;69(5): 2968–2976.

17. Floettmann J.E., Rowe M. Epstein–Barr virus latent membrane protein-1 (LMP1) C- terminus activation region 2 (CTAR2) maps to the far C-terminus and requires oligomerisation for NF-kB activation. Oncogene 1997;15:1851–1858.

18. Eliopoulos A.G., Young L.S. Activation of the cJun N-terminal kinase (JNK) pathway by the Epstein–Barr virus-encoded latent membrane protein 1 (LMP1). Oncogene 1998;16:1731–1742.

19. Eliopoulos A.G., Gallagher N.J., Blake S.M.S. et al. Activation of the p38 itogenactivated

20. protein kinase pathway by Epstein-Barr virus-encoded latent membrane protein 1 coregulates interleukin-6 and interleukin-8 production. J Biol Chem 1999;274(23):16085–16096.

21. Gires O., Kohlhuber F., Kilger E. et al. Latent membrane protein 1 of Epstein–Barr virus interacts with JAK3 and activates STAT proteins. EMBO J 1999;18(11): 3064–3073.

22. Dawson C.W., Tramountanis G., Eliopoulos A.G., Young L.S. Epstein-Barr virus latent membrane protein 1 (LMP1) activates the phosphatidylinositol 3-kinase/ Akt pathway to promote cell survival and induce actin filament remodeling. J Biolog Chem 2003;278(6):3694–3704.

23. Mainou B.A., Everly D.N., Raab-Traub N. Unique signaling properties of CTAR1 in LMP1-mediated transformation. J Virol 2007;81(18):9680–9692.

24. Shair K.H.Y., Bendt K.M., Edwards R.H. et al. EBV latent membrane protein 1 activates Akt, NF-κB, and Stat3 in B cell lymphomas. PLoS Path 2007;3(11):1669– 1683.

25. Karin M. How NF-kB is activated: the role of the IkB kinase (IKK) complex. Oncogene 1999;18:6867–6874.

26. Karin M., Cao Y., Greten F.R., Li Z.-W. NF-κB in cancer: from innocent bystander to major culprit. Natur Rew Cancer 2002;2:301–310.

27. Mosialos G. Cytokine signaling and Epstein-Barr virus-mediated cell transformation. Cytokine & Growth Factor 2001;12:259–270.

28. Li L., Li W., Xiao L. et al. Viral oncoprotein LMP1 disrupts p53-induced cell cycle arrest and apoptosis through modulating K63-linked ubiquitination of p53. Cell Cycle 2012;11:2327–2336.

29. Guo L., Tang M., Yang L. et al. Epstein-Barr virus oncoprotein LMP1 mediates survivin upregulation by p53 contributing to G1/S cell cycle progression in nasopharyngeal carcinoma. Int J Mol Med 2012;29:574–580.

30. Horikawa T., Yoshizaki T., Kondo S. et al. Epstein-Barr Virus latent membrane protein 1 induces Snail and epithelialmesenchymal transition in metastatic nasopharyngeal carcinoma. Br J Cancer 2011;104(7):1160–1167.

31. Sides M.D., Klingsberg R.C., Shan B. et al. The Epstein-Barr virus latent membrane protein 1 and transforming growth factor-β1 synergistically induce epithelialmesenchymal transition in lung epithelial cells. Am J Respir Cell Mol Biol 2011;44(6):852–862.

32. Horikawa T., Yang J., Kondo S. et al. Twist and epithelial-mesenchymal transition are induced by the EBV oncoprotein latent membrane protein 1 and are associated with metastatic nasopharyngeal carcinoma. Cancer Res 2007;67(5):1970–1978.

33. Corvalan A., Akiba S., Valenzuela M.T. et al. Clinical and molecular features of cardial gastric cancer associated to Epstein-Barr virus. Rev Med Chil 2005;133(7):753–760.

34. Hahn P., Novikova E., Scherback L. et al. The LMP1 gene isolated from Russian nasopharyngeal carcinoma has no 30-bp deletion. Int J Cancer 2001;91:815–821.

35. Tang W., Pavlish O.A., Spiegelman V.S., Parkhitko A.A. et al. Interaction of Epstein- Barr virus latent membrane protein 1 with SCFHOS/β-TrCP E3 ubiquitin ligase regulates extent of NF-kB activation. J Biolog Chem 2003;278(49):48942–48949.

36. Edwards R.H., Sitki-Green D., Moore D.T., Raab-Traub N. Potential selection of LMP1 variants in nasopharyngeal carcinoma. J Virol 2004;78(2):868–881.

37. Manet E., Rigolet A., Gruffat H., Giot J.F., Sergeant A. et al. Domains of the Epstein-Barr virus (EBV) transcription factor R required for dimerization, DNA binding and activation. Nucl Ac Res 1991;19(10):2661–2667.

38. Hu L.-F., Zabarovsky E.R., Chen F. et al. Isolation and sequencing of the Epstein-Barr virus BNLF-1 gene (LMP1) from a Chinese nasopharyngeal carcinoma. J Gener Virol 1991;72:2399–2400.

39. Sandvej K., Gratama J.W., Munch M. et al. Sequence analysis of the Epstein-Barr virus (EBV) latent membrane protein-1 gene and promoter region: identification of 4 variants among wild-type EBV isolates. Blood 1997;90:323–330.

40. Walling D., Shebib N., Weaver S. et al. The molecular epidemiology and evolution of Epstein-Barr virus: sequence variation and genetic recombination in the latent membrane protein-1 gene. J Infect Dis 1999;179:763–774.

41. Edwards R., Seillier Moisewitsch F., Raab-Traub N. Signature amino acids changes in latent membrane protein 1 distinguish Epstein-Barr virus strains. Virology 1999;261:79–95.

42. Lee M.Y., Zhou Y., Lung R.W. et al. Expression of viral capsid protein antigen against Epstein-Barr virus in plastids of Nicotiana tabacum cv. SR1. Biotechnol Bioeng 2006;94(6):1129–1137.

43. Emini E.A., Schleif W.A., Armstrong M.E. et al. Antigenic analysis of the Epstein- Barr virus major membrane antigen (gp350/220) expressed in yeast and mammalian cells: implications for the development of a subunit vaccine. Virology 1988;166(2):387–393.

44. Гурцевич В.Э. Вирус герпеса человека 8-го типа (HHV-8). Канцерогенез. М.: Медицина, 2004. C. 314–325.

45. Dittmer D.P., Damania B. Kaposi sarcoma associated herpesvirus pathogenesis (KSHV)-an update. Curr Opin Virol 2013;3(3):238–244.

46. Uldrick T.S., Whitby D. Update on KSHV epidemiology, Kaposi Sarcoma pathogenesis, and treatment of Kaposi Sarcoma. Cancer Lett 2011;305(2):150–162.

47. Kadyrova E., Lacoste V., Duprez R. et al. Molecular epidemiology of Kaposi`s sarcoma-associated herpesvirus/human herpesvirus 8 (KSHV/HHV8) strains of classic, post transplant and AIDS associated Kaposi`s sarcoma from Russia. J Med Virol 2003;71:548–556.

48. Zur Hausen H. Papillomavirus infections: a major cause of human cancers. Biochim Biophys Acta 1996;1288:F55–F78.

49. Киселев Ф.Л. Вирусы папиллом и их роль в канцерогенезе шейки матки. Канцерогенез. М.: Медицина, 2004. C. 287–297.

50. Yim E.K., Park J.S. The role of HPV E6 and E7 oncoproteins in HPV-associated cervical carcinogenesis. Cancer Res Treat 2005;37(6):319–324.

51. Yugawa T., Kiyono T. Molecular mechanisms of cervical carcinogenesis by high-risk human papillomaviruses: novel functions of E6 and E7 oncoproteins. Rev Med Virol 2009;19(2):97–113.

52. Ghittoni R., Accardi R., Hasan U., Gheit T., Sylla B., Tommasino M. The biological properties of E6 and E7 oncoproteins from human papillomaviruses. Virus Genes 2010;40(1):1–13.

53. Ganguly N., Parihar S.P. Human papillomavirus E6 and E7 oncoproteins as risk factors for tumorigenesis. J Biosci 2009;34(1):113–123.

54. Einstein M.H., Baron M., Levin M.J. et al. HPV-010 Study Group. Comparative immunogenicity and safety of human papillomavirus (HPV)-16/18 vaccine and HPV-6/11/16/18 vaccine: follow-up from months 12-24 in a Phase III randomized study of healthy women aged 18-45 years. Hum Vaccin 2011;7(12):1343–1358.

55. Morrow M.P., Yan J., Sardesai N.Y. Human papillomavirus therapeutic vaccines: targeting viral antigens as immunotherapy for precancerous disease and cancer. Expert Rev Vaccines 2013;12(3):271–283.

56. Stern P.L., van der Burg S.H., Hampson I.N. et al. Therapy of human papillomavirus-related disease. Vaccine 2012;30(Suppl 5):F71–82.

57. Dalianis T., Hirsch H.H. Human polyomaviruses in disease and cancer. Virology 2013;437(2):63–72.

58. Amber K., McLeod M.P., Nouri K. The Merkel cell polyomavirus and its involvement in Merkel cell carcinoma. Dermatol Surg 2013;39(2):232–238.

59. Ultori C., Cimetti L., Stefanoni P., Pellegrini R., Rapazzini P., Capella C. Merkel cell carcinoma in elderly: case report and review of the literature. Aging Clin Exp Res 2013;25(2):211–214.

60. Prieto Muñoz I., Pardo Masferrer J., Olivera Vegas J., Medina Montalvo M.S., Jover Díaz R., Pérez Casas A.M. Merkel cell carcinoma from 2008 to 2012: reaching a new level of understanding. Cancer Treat Rev 2013;39(5):421–429.

61. Spurgeon M.E., Lambert P.F. Merkel cell polyomavirus: a newly discovered human virus with oncogenic potential. Virology 2013;435(1):118–130.

62. Киселев Ф.Л. Роль вируса гепатита в развитии рака печени. Канцерогенез. М.: Медицина, 2004. C. 297–303.

63. Гурцевич В. Э. Вирусы гепатита человека «В» и «С» (HBV, HCV) и их роль в возникновении рака печени. Биохимия 2008;73(5):627–639.

64. Arzumanyan A., Reis H.M., Feitelson M.A. Pathogenic mechanisms in HBV- and HCV-associated hepatocellular carcinoma. Nat Rev Cancer 2013;13(2):123–135.

65. Venters C., Graham W., Cassidy W. Recombivax-HB: perspectives past, present and future. Expert Rev Vaccines 2004;3(2):119–129.

66. Tsen Y.J., Chang M.H., Hsu H.Y. et al. Seroprevalence of hepatitis B virus infection in children in Taipei, 1989: five years after a mass hepatitis B vaccination program. J Med Virol 1991;34(2):96–99.

67. Гурцевич В.Э. Вирусы Т-клеточного лейкоза человека. Клиническая онкогематология. М.: Медицина, 2007. C. 190–198.

68. Mahieux R., Gessain A. HTLV-3/STLV-3 and HTLV-4 viruses: discovery, epidemiology, serology and molecular aspects. Viruses 2011;3(7):1074–1090.

69. Bertazzoni U., Turci M., Avesani F. et al. Intracellular localization and cellular factors interaction of HTLV-1 and HTLV-2 Tax proteins: similarities and functional differences. Viruses 2011;3(5):541–560.

70. Сенюта Н.Б., Клейман А.М. Эндогенные ретровирусы человека. Канцерогенез. М.: Медицина, 2004. C. 342–351.

71. Seniuta N.B., Kleiman A.M., Karseladze A.I. et al. HERV-K-associated carcinogenesis: co-expression of viral and cellular proteins in the development of human germ-cell tumors. Vopr Virusol 2009;54(2):21–26.

72. Kleiman A., Senyuta N., Tryakin A. et al. HERV-K(HML-2) GAG/ENV antibodies as indicator for therapy effect in patients with germ cell tumors. Int J Cancer 2004;110(3):459–461.

73. Galli U.M., Sauter M., Lecher B. et al. Human endogenous retrovirus rec interferes with germ cell development in mice and may cause carcinoma in situ, the predecessor lesion of germ cell tumors. Oncogene 2005; 24(19):3223–3228.

74. Kaufmann S., Sauter M., Schmitt M. et al. Human endogenous retrovirus protein Rec interacts with the testicular zinc-finger protein and androgen receptor. J Gen Virol 2010;91(6):1494–1502.

75. Hanke K., Chudak C., Kurth R., Bannert N. The Rec protein of HERVK( HML-2) upregulates androgen receptor activity by binding to the human small glutamine-rich tetratricopeptide repeat protein (hSGT). Int J Cancer 2013;132(3):556–567.

76. Denne M., Sauter M., Armbruester V. et al. Physical and functional interactions of human endogenous retrovirus proteins Np9 and rec with the promyelocytic leukemia zinc finger protein. J Virol 2007;81(11):5607–5616.

77. Крюкова И.Н. О возможном участии ретровирусов в индукции рака молочных желез человека. Канцерогенез. М.: Медицина, 2004. C. 351–361.

78. Cegolon L., Salata C., Weiderpass E., Vineis P., Palù G., Mastrangelo G. Human endogenous retroviruses and cancer prevention: evidence and prospects. BMC Cancer 2013;13:4.

79. Wang-Johanning F., Rycaj K., Plummer J.B. et al. Immunotherapeutic potential of anti-human endogenous retrovirus-K envelope protein antibodies in targeting breast tumors. J Natl Cancer Inst 2012;104(3):189–210.

80. Zhao J., Rycaj K., Geng S. et al. Expression of Human Endogenous Retrovirus Type K Envelope Protein is a Novel Candidate Prognostic Marker for Human Breast Cancer. Genes Cancer 2011;2(9):914–922.

81. Golan M., Hizi A., Resau J.H. et al. Human endogenous retrovirus (HERV-K) reverse transcriptase as a breast cancer prognostic marker. Neoplasia 2008;10(6):521–533.

82. Hahn S., Ugurel S., Hanschmann K.M. et al. Serological response to human endogenous retrovirus K in melanoma patients correlates with survival probability. AIDS Res Hum Retroviruses 2008;24(5):717–723.

83. Serafino A., Balestrieri E., Pierimarchi P. et al. The activation of human endogenous retrovirus K (HERV-K) is implicated in melanoma cell malignant transformation. Exp Cell Res 2009;315(5):849–862.

84. Patel M.R., Kratzke R.A. Oncolytic virus therapy for cancer: the first wave of translational clinical trials. Transl Res 2013;161(4):355–364.

85. Trnková K., Pastoreková S., Petrik J. Novel approaches to antiviral and anticancer immunotherapy. Acta Virol 2012;56(4): 271–282.


Для цитирования:


Гурцевич В.Э., Сенюта Н.Б., Смирнова К.В. Влияние полиморфизма геномов онкогенных вирусов на риск возникновения опухолей человека и их специфическая профилактика. Успехи молекулярной онкологии. 2014;1(1):36-47. https://doi.org/10.17650/2313-805X.2014.1.1.36-47

For citation:


Gurtsevich V.E., Senyuta N.B., Smirnova K.V. Influence of genetic polymorphism of oncogenic viruses on the risk of human tumors and their specific prevention. Advances in molecular oncology. 2014;1(1):36-47. (In Russ.) https://doi.org/10.17650/2313-805X.2014.1.1.36-47

Просмотров: 212


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2313-805X (Print)
ISSN 2413-3787 (Online)