Эпигенетическая регуляция экспрессии генов в вирус-ассоциированных опухолях человека
https://doi.org/10.17650/2313-805X.2014.1.1.48-55
Аннотация
Опухоли, ассоциированные с вирусами, составляют около 20 % всех опухолей человека. До недавнего времени при исследовании молекулярных механизмов вирусного канцерогенеза основные усилия были направлены на генетические нарушения, вызываемые онкогенными вирусами в клетке. Успехи, достигнутые в понимании механизмов эпигенетической регуляции экспрессии генов, стимулировали исследования взаимодействия вирусов и клетки-хозяина на эпигенетическом уровне. В обзоре рассмотрены общие закономерности взаимодействия онкогенных вирусов с эпигенетической системой регуляции функционирования генома и специфические для каждого вируса особенности этого взаимодействия в процессе установления латентной инфекции и опухолевой трансформации. Исследования регуляции экспрессии вирусного генома эпигенетической системой клетки и, с другой стороны, нарушений этой системы вирусами вносят вклад в понимание механизмов вирусного канцерогенеза, выявление новых маркеров прогрессии опухолей и мишеней для таргетной терапии.
Об авторах
Н. П. КиселёваРоссия
Л. Ф. Киселёв
Россия
Список литературы
1. Aльтштейн А.Д. Вирусный канцерогенез и роль вирусов в возникновении опухолей человека. В сб.: Канцерогенез. М.: Медицина, 2004. С. 251–274.
2. Киселев Ф.Л. Онкогенный потенциал вирусов и механизмы его проявления. В сб.: Канцерогенез. М.: Медицина, 2004. С. 274–287.
3. zur Hausen H. Infections causing human cancers. Wiley-VCH, Weinheim-New York, Publ, 2d edition, 2011.
4. McLaughin-Drubin M.E. and Munger K. Viruses associated with human cancer. Biochem Biophys Acta 2008;1782:127–50.
5. Fernandez A.F., Rosales C., Lopez–Nieva P. et al. The dynamic DNA methylomes of double–stranded DNA viruses associated with human cancer. Genome Res 2009;19:438–51.
6. Fernandez A. and Esteller M. Viral epigenomes in human tumorigenesis. Oncogene 2010;29:1405–20.
7. Lambert M.P., Paliwal A., Vaissiere T. et al. Aberrant DNA methylation distinguishes hepatocellular carcinoma associated with HBV and HCV infection and alcohol intake. J Hepatol 2011;54:705–15.
8. Henken F.E., Wilting S.M., Overmeer R.M. et al. Sequential gene promoter methylation during HPV–induced cervical carcinogenesis. Br J Cancer 2007;97:1457–64.
9. Senchenko V.N., Kisseljova N.P., Dmitriev A.A. et al. Novel tumor suppressor candidates on chromosome 3 revealed by Notl–microarrays in cervical cancer. Epigenetics 2013;8:409–20.
10. Wilson G.A., Lechner M., Köferle A. et al. Integrated virus-host methylome analysis in head and neck squamous cell carcinoma. Epigenetics 2013;8:953–61.
11. Yamagishi M. and Watanabe T. Molecular hallmarks of adult T cell leukemia. Front Microbiol 2012;3:1–16.
12. Okada T., Nakamura M., Nishikawa J. et al. Identification of genes specifically methylated in Epstein–Barr virus–associated gastric carcinomas. Cancer Sci 2013;104:1309–14.
13. Niller H.H., Wolf H. and Minarovits J. Epigenetic dysregulation of the host cell genome in Epstein–Barr virus-associated neoplasia. Semin Cancer Biol 2009;19:158–64.
14. Paschos K. and Allday M. Epigenetic reprogramming of host genes in viral and microbial pathogenesis. Trends Microbiol 2010;18:439–47.
15. Ryan J.L., Jones R.J., Kenney S.C. et al. Epstein–Barr virus-specific methylation of human genes in gastric cancer cells. Infect Agent Cancer 2010;5:27–32.
16. Herceg Z. and Paliwal A. Epigenetic mechanisms in hepatocellular carcinoma: How environmental factors influence the epigenome. Mut Res 2011;727:55–61.
17. Flanagan J. Host epigenetic modifications by oncogenic viruses. Br J Cancer 2007;96:183–8.
18. Ferrari R., Berk A.J. and Kurdistani S.K. Viral manipulation of the host epigenome for oncogenic transformation. Nat Rev Genet 2009;10:290–4.
19. Ramalingam D., Kieffer–Kwon P. and Ziegelbauer J.M. Emerging Themes from EBV and KSHV microRNA. Targets Viruses 2012;4:1687–710.
20. Qian K., Pietilä T., Rönty M. et al. Identification and Validation of Human Papillomavirus Encoded microRNAs. PLoS One 2013;8:e70202.
21. Woellmer A. and Hammerschmidt W. Epstein–Barr virus and host cell methylation: regulation of latency, replication and virus reactivation. Curr Opin Virol 2013;3:260–5.
22. Bhende P.M., Seaman W.T., Delecluse H.J. et al. The EBV lytic switch protein, Z, preferentially binds to and activates the methylated viral genome. Nat Genet 2004;36:1099–104.
23. Vereide D.T., Seto E., Chiu Y–F. et al. Epstein–Barr virus maintains lymphomas via its miRNAs. Oncogene 2014;33:1258–64.
24. Caliskan M., Cusanovich D.A., Ober C. et al. The effects of EBV transformation on gene expression levels and methylation profile. Human Mol Genet 2011;20: 1643–52.
25. Tsai C.N., Tsai C.L., Tse K.P. et al. The Epstein–Barr virus oncogene product, latent membrane protein 1, induces the downregulation of E–cadherin gene expression via activation of DNAmethyltransferases. Proc Natl Acad Sci USA 2002;99:10084–90.
26. Shinozaki A., Sakatani T., Ushiku T. et al. Downregulation of microRNA–200 in EBV– associated gastric carcinoma. Cancer Res 2010;70:4719–27.
27. Motsch N., Pfuhl T., Mrazek J. et al. Epstein–Barr virus encoded latent membrane protein 1 (LMP1) induces the expression of the cellular microRNA miR–146. RNA Biol 2007;4:131–7.
28. Pantrya S.N. and Medveczkya P.G. Epigenetic regulation of Kaposhi's sarcoma assotiated herpesvirus replication. Semin Cancer Biol 2009;19:153–7.
29. Lim C., Lee D., Seo T. et al. Latencyassociated nuclear antigen of Kaposi’s sarcoma-associated herpesvirus functionally interacts with heterochromatin protein 1. J Biol Chem 2003;27:7397–405.
30. Guёnther T. and Grundhoff A. The Epigenetic Landscape of Latent Kaposi. Sarcoma-Associated Herpesvirus Genomes. PLoS Pathog 2010;6:e100093524.
31. Di Bartolo D.L. Cannon V., Liu Y.F et al. KSHV LANA inhibits TGF-beta signaling through epigenetic silencing of the TGF–beta type II receptor. Blood 2008;111:4731–40.
32. Gottwein E., Mukherjee N., Sachse C. et al. A viral microRNA functions as an orthologue of cellular miR–155. Nature 2007;450:1096–9.
33. Kalantari M., Calleja-Macias E., Tewari D., et al. Conserved methylation patterns of human papillomavirus type 16 DNA in asymptomatic infection and cervical neoplasia. J Virol 2004;7:12762–12772.
34. Kalantari M., Lee D., Calleja-Macias I.E. et al. Effects of cellular differentiation, chromosomal integration and 5-aza-2- deoxycytidine treatment on human papillomavirus-16 DNA methylation in cultured cell line. Virology 2008;374:292–303.
35. Vinokurova S., von Knebel–Doeberitz M. Differential methylation of the HPV 16 upstream regulatory region during epithelial differentiation and neoplastic Transformation. PLoS One 2011;6:e24451.
36. Johannsen E. and Lambert P. Epigenetics of human papillomaviruses. Virology 2013;445:205–12.
37. Burgers W.A., Blanchon L., Pradhan S. et al. Viral oncoproteins target the DNA methyltransferases. Oncogene 2007;26:1650–5.
38. Leonard S.M., Wei W., Collins S.I. et al. Oncogenic human papillomavirus imposes an instructive pattern of DNA methylation changes which parallel the natural history of cervical HPV infection in young women. Carcinogenesis 2012;33:1286–93.
39. Longworth M.S., Wilson R. and Laimins L.A. HPV31 E7 facilitates replication by activating E2F2 transcription through its interaction with HDACs. Embo J 2005;24:1821–30.
40. Melar-New M. and Laimins L. Human papillomaviruses modulate expression of microRNA 203 upon epithelial differentiation to control levels of p63 proteins. J Virol 2010;84:5212–21.
41. Kaur P., Paliwal A., Durantel D. et al. DNA Methylation of Hepatitis B Virus (HBV) Genome Associated with the Development of Hepatocellular Carcinoma and Occult HBV Infection. J Infect Dis 2010;202:700–4.
42. Guo Y.H., Li Y.N., Zhao J.R. et al. HBc binds to the CpG islands of HBV cccDNA and promotes an epigenetic permissive state. Epigenetics 2011;6:720–6.
43. Tian Y., Yang W., Song J. et al. Hepatitis B Virus X Protein-Induced Aberrant Epigenetic Modifications Contributing to Human Hepatocellular Carcinoma Pathogenesis. Mol Cell Biol 2013;33:2810–6.
44. Zheng D.L., Zhang L., Cheng N. et al. Epigenetic modification induced by hepatitis B virus X protein via interaction with de novoDNAmethyltransferase DNMT3A. J Hepatol 2009;50:377–87.
45. Zhu Y.Z., Zhu R., Fan J. et al. Hepatitis B virus X protein induces hypermethylation of p16(INK4A) promoter via DNA methyltransferases in the early stage of HBVassociated hepatocarcinogenesis. Viral Hepat 2010;17:98–107.
46. Wei X., Xiang T., Ren G. et al. miR-101 is down-regulated by the hepatitis B virus X protein and induces aberrant DNA methylation by targeting DNA methyltransferase 3A. Cell Signal 2013;25:439–46.
47. Gao P., Wong C.C., Tung E.K. et al. Deregulation of microRNA expression occurs early and accumulates in early stages of HBVassociated multistep hepatocarcinogenesis. J Hepatol 2011;54:1177–84.
48. Shon J.K., Shon B.H., Park I.Y. et al. Hepatitis B virus–X protein recruits histone deacetylase 1 to repress insulin-like growth factor binding protein 3 transcription. Virus Res 2009;139:14–21.
49. Su P.F., Lee T.C., Lin P.J. et al. Differential DNA methylation associated with hepatitis B virus infection in hepatocellular carcinoma. Int J Cancer 2007;12:1257–64.
50. Chen Y., Shen A., Rider P.J. et al. A liver–specific microRNA binds to a highly conserved RNA sequence of hepatitis B virus and negatively regulates viral gene expression and replication. FASEB J 2011;25:4511–21.
51. Arzumanyan A., Reis H.M. and Feitelson M.A. Pathogenic mechanisms in HBVand HCV-associated hepatocellular Carcinoma. Nature Rev Cancer 2013;13:123–35.
52. Hoffmann T.W., Gilles D. and Abderrahmane B. MicroRNAs and hepatitis C virus: Toward the end of miR-122 supremacy. BMC Virol J 2012;9:109.
53. Thibault P.A. and Wilson J.A. Targeting miRNAs to treat Hepatitis C Virus infections and liver pathology: Inhibiting the virus and altering the host. Pharmacol Res 2013;75:48–59.
54. Lanford R.E., Hildebrandt E.S., Petrri A. et al. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 2010;327:198–201.
55. Taniguchi Y., Nosaka K., Yasunaga J. et al. Silencing of human T-cell leukemia virus type I gene transcription by epigenetic mechanisms. BMC Retrovirology 2005;2:64.
56. Matsuoka M. and Yasunaga J.I. Human T-cell leukemia virus type 1: replication, proliferation and propagation by Tax and HTLV-1 bZIP factor. Curr Opin Virol 2010;3:1–8.
57. Takeda S., Maeda M., Morikawa S. et al. Genetic and epigenetic inactivation of tax gene in adult T-cell leukemia cells. Int J Cancer 2004;109:559–67.
58. Currer R., Van Duyne R., Jaworski E. et al. HTLV Tax: a fascinating multifunctional co-regulator of viral and cellular pathways. Frontier Microbiol 2013;3:1–8.
59. Kamoi K., Yamamoto K., Misawa A. et al. SUV39H1 interacts with HTLV-1 tax and abrogates tax transactivation of HTLV-1 LTR. BMC Retrovirology 2006;3:5.
60. Ego T., Tanaka Y. and Shimotohno K. Interaction of HTLV-1 Tax and methyl- CpG-binding domain 2 positively regulates the gene expression from the hypermethylated LTR. Oncogene 2005;24:1914–23.
61. Doi K., Wu X., Taniguchi Y. et al. Preferential selection of human T-cell leukemia virus type I provirus integration sites in leukemic versus carrier states. Blood 2005;106:1048–1053.
62. Houzet L. and Jeang K.T. MicroRNAs and human retroviruses. Biochim Biophys Acta 2011;1809:686–93.
63. Abe M., Suzuki H., Nishitsuji H. et al. Interaction of human T-cell lymphotropic virus type I Rex protein with Dicer suppresses RNAi silencing. FEBS Lett 2010;58:4313–8.
64. Lezin A., Gillet N., Olindo S. et al. Histone deacetylase mediated transcriptional activation reduces proviral loads in HTLV-1- associated myelopathy/tropical spastic paraparesis patients. Blood 2007;110:3722–8.
65. Belrose G., Gross A., Olindo S. et al. Effects of valproate on Tax and HBZ expression in HTLV-1 and HAM/TSPT Lymphocytes. Blood 2011;118:2483–91.
66. Zimmerman B., Sargeant A., Landes K. et al. Efficacy of novel histone deacetylase inhibitor, AR42, in a mouse model of human T-lymphotropic virus type 1 adult T cell lymphoma. Leukemia Res 2011;35: 1491–7.
Рецензия
Для цитирования:
Киселёва Н.П., Киселёв Л.Ф. Эпигенетическая регуляция экспрессии генов в вирус-ассоциированных опухолях человека. Успехи молекулярной онкологии. 2014;1(1):48-55. https://doi.org/10.17650/2313-805X.2014.1.1.48-55
For citation:
Kisseljova N.P., Kisseljov F.L. Epygenetic regulation of gene expression in virus-associated human tumors. Advances in Molecular Oncology. 2014;1(1):48-55. (In Russ.) https://doi.org/10.17650/2313-805X.2014.1.1.48-55