Tumor associated macrophages: current research and perspectives of clinical use
https://doi.org/10.17650/2313-805X-2018-5-4-20-28
Abstract
Macrophages are the key cells of the innate immune system. One of the main functions of macrophages is the regulation of inflammation. Being common in all tissues and organs of the human body, tissue macrophages control their condition and guarantee a timely and effective response to damage, pathogen penetration or cell transformation. After eliminating the cause of inflammation, macrophages initiate the processes of healing and restoration of tissue homeostasis. At the end of the 20th century, the concept of macrophage activation dichotomy was proposed, which divided them into classically (M1) and alternatively (M2) activated ones. The development of this concept has led to the description of a wide variety of macrophage phenotypes. At the same time, M2 continues to be considered a prototype of tumor associated macrophages (TAM).
TAM represent one of the most important cell types in the tumor microenvironment. Like all macrophages, they have a certain level of heterogeneity and plasticity, which develop under the influence of cytokines and growth factors produced by tumor cells. TAM, in turn, produces growth factors, cytokines and extracellular matrix components that support the progression of the tumor and increase its malignant potential. Numerous clinical studies have shown that the amount of TAM is often correlated with a poor prognosis of the disease. TAM perform a large number of functions necessary to maintain tumor progression. They are capable of stimulating angiogenesis and reorganization of the vascular system. Since the role of TAM in tumor development has become apparent, various attempts have been made to use them in the clinic. It can be confidently asserted that various TAM markers are very attractive as diagnostic and prognostic markers of various tumors, and also as promising targets for the development of new targeted therapeutic agents.
About the Authors
A. N. GratchevRussian Federation
24 Kashirskoe Shosse, Moscow 115478
D. V. Samoilova
Russian Federation
24 Kashirskoe Shosse, Moscow 115478
M. A. Rashidova
Russian Federation
24 Kashirskoe Shosse, Moscow 115478
A. A. Petrenko
Russian Federation
24 Kashirskoe Shosse, Moscow 115478
O. V. Kovaleva
Russian Federation
24 Kashirskoe Shosse, Moscow 115478
References
1. Fernandez-Velasco M., Gonzalez-Ra- mos S., Bosca L. Involvement of monocytes/macrophages as key factors in the development and progression of cardiovascular diseases. Biochem J 2014;458(2):187–93. DOI: 10.1042/BJ20131501. PMID: 24524191.
2. Chavez-Sanchez L., Espinosa-Luna J.E., Chavez-Rueda K. et al. Innate immune system cells in atherosclerosis. Arch Med Res 2014;45(1):1–14. DOI: 10.1016/j.arcmed.2013.11.007. PMID: 24326322.
3. Gordon S., Taylor P.R. Monocyte and macrophage heterogeneity. Nat Rev Immunol 2005;5(12):953–64. DOI: 10.1038/ nri1733. PMID: 16322748.
4. Gratchev A., Kzhyshkowska J., Kothe K. et al. Mphi1 and Mphi2 can be re-polarized by Th2 or Th1 cytokines, respectively, and respond to exogenous danger signals. Immunobiology 2006;211(6–8):473–86. DOI: 10.1016/j.imbio.2006.05.017. PMID: 16920487.
5. Hansson G.K. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 2005;352(16):1685–95. DOI: 10.1056/NEJMra043430. PMID: 15843671.
6. Bingle L., Brown N.J., Lewis C.E. The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J Pathol 2002;196(3):254–65. DOI: 10.1002/path.1027. PMID: 11857487.
7. Stout R.D., Suttles J. Functional plasticity of macrophages: reversible adaptation to changing microenvironments. J Leukoc Biol 2004;76(3):509–13. DOI: 10.1189/jlb.0504272. PMID: PMC1201486.
8. Stein M., Keshav S., Harris N., Gordon S. Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J Exp Med 1992;176(1):287–92. PMID: 1613462.
9. Locati M., Mantovani A., Sica A. Macrophage activation and polarization as an adaptive component of innate immunity. Adv Immunol 2013;120:163–84. DOI: 10.1016/B978-0-12-4170285.00006-5. PMID: 24070384.
10. Gratchev A., Schledzewski K., Guillot P., Goerdt S. Alternatively activated antigenpresenting cells: molecular repertoire, immune regulation, and healing. Skin Pharmacol Appl Skin Physiol 2001;14(5):272–9. DOI: 10.1159/000056357. PMID: 11586068.
11. Mantovani A. Chemokines in neoplastic progression. Semin Cancer Biol 2004;14(3):147–8. DOI: 10.1016/j.semcancer.2003.10.010. PMID: 15246048.
12. Ferreira M.A. Cytokine expression in allergic inflammation: systematic review of in vivo challenge studies. Mediators Inflamm 2003;12(5):259–67. DOI: 10.1080/09629350310001619717. PMID: 14760932.
13. Goerdt S., Politz O., Schledzewski K. et al. Alternative versus classical activation of macrophages. Pathobiology 1999; 67(5–6):222–6. DOI: 10.1159/000028096. PMID: 10725788.
14. Gordon S., Clarke S., Greaves D. et al. Molecular immunobiology of macrophages: recent progress. Curr Opin Immunol 1995;7(1):24–33. PMID: 7772278.
15. Gratchev A., Kzhyshkowska J., Utikal J., Goerdt S. Interleukin-4 and dexamethasone counterregulate extracellular matrix remodelling and phagocytosis in type-2 macrophages. Scand J Immunol 2005;61(1):10–7. DOI: 10.1111/j.0300-9475.2005.01524.x. PMID: 15644118.
16. Gratchev A., Guillot P., Hakiy N. et al. Alternatively activated macrophages differentially express fibronectin and its splice variants and the extracellular matrix protein betaIG-H3. Scand J Immunol 2001;53(4):386–92. PMID: 11285119.
17. Gordon S. Alternative activation of macrophages. Nat Rev Immunol 2003;3(1):23–35. DOI: 10.1038/nri978. PMID: 12511873.
18. Gratchev A., Kzhyshkowska J., Kannookadan S., et al. Activation of a TGF-betaspecific multistep gene expression program in mature macrophages requires glucocorticoid-mediated surface expression of TGF-beta receptor II. J Immunol. 2008;180(10):6553–65.
19. Gratchev A. TGF-beta signalling in tumour associated macrophages. Immunobiology 2017;222(1):75–81. DOI: 10.1016/j.imbio.2015.11.016.
20. Anderson C.F., Gerber J.S., Mosser D.M. Modulating macrophage function with IgG immune complexes. J Endotoxin Res.2002;8(6):477–81. DOI: 10.1179/096805102125001118. PMID: 12697094.
21. Herrero C., Hu X., Li W.P. et al. Reprogramming of IL-10 activity and signaling by INF-γ. J Immunol 2003;171(10): 5034–41. PMID: 14607900.
22. Kim J., Hematti P. Mesenchymal stem cell-educated macrophages: a novel type of alternatively activated macrophages. Exp Hematol 2009;37(12):1445–53. DOI: 10.1016/j.exphem.2009.09.004. PMID: 19772890.
23. Chevrier S., Levine J.H., Zanotelli V.R.T. et al. An immune atlas of clear cell renal cell carcinoma. Cell 2017;169(4):736–49. e18. DOI: 10.1016/j.cell.2017.04.016. PMID: 28475899.
24. Blaser M.J., Perez-Perez G.I., Kleanthous H. et al. Infection with Helicobacter pylori strains possessing cagA is associated with an increased risk of developing adenocarcinoma of the stomach. Cancer Res 1995;55(10):2111–5. PMID: 7743510.
25. Kuper H., Adami H.O., Trichopoulos D. Infections as a major preventable cause of human cancer. J Intern Med 2000;248(3):171–83. PMID: 10971784.
26. Scholl S.M., Pallud C., Beuvon F. et al. Anti-colony-stimulating factor-1 antibody staining in primary breast adenocarcinomas correlates with marked inflammatory cell infiltrates and prognosis. J Natl Cancer Inst 1994;86(2):120–6. PMID: 8271294.
27. Shacter E., Weitzman S.A. Chronic inflammation and cancer. Oncology (WillistonPark) 2002;16(2):217–26.
28. Maeda H., Akaike T. Nitric oxide and oxygen radicals in infection, inflammation, and cancer. Biochemistry (Mosc) 1998;63(7):854–65. PMID: 9721338.
29. Yamanishi Y., Boyle D.L., Rosengren S. et al. Regional analysis of p53 mutations in rheumatoid arthritis synovium. Proc Natl Acad Sci USA 2002;99(15):10025– 30. DOI: 10.1073/pnas.152333199. PMID: 12119414.
30. Ernst P.B., Gold B.D. The disease spectrum of Helicobacter pylori: the immunopathogenesis of gastroduodenal ulcer and gastric cancer. Annu Rev Microbiol 2000;54:615–40. PMID: 11018139.
31. Hudson J.D., Shoaibi M.A., Maestro R. et al. A proinflammatory cytokine inhibits p53 tumor suppressor activity. J Exp Med 1999;190(10):1375–82. PMID: 10562313.
32. Brigati C., Noonan D.M., Albini A., Benelli R. Tumors and inflammatory infiltrates: friends or foes? Clin Exp Metastasis 2002;19(3):247–58. PMID: 12067205.
33. Leek R.D., Harris A.L. Tumor-associated macrophages in breast cancer. J Mammary Gland Biol Neoplasia 2002;7(2):177–89. PMID: 12463738.
34. Saji H., Koike M., Yamori T. et al. Significant correlation of monocyte chemoattractant protein-1 expression with neovascularization and progression of breast carcinoma. Cancer 2001;92(5):1085–91. PMID: 11571719.
35. Ueno T., Toi M., Saji H. et al. Significance of macrophage chemoattractant protein-1 in macrophage recruitment, angiogenesis, and survival in human breast cancer. Clin Cancer Res 2000;6(8):3282–9. PMID: 10955814.
36. Kacinski B.M. CSF-1 and its receptor in ovarian, endometrial and breast cancer. Ann Med 1995;27(1):79–85. PMID: 7742005.
37. Kacinski B.M. CSF-1 and its receptor in breast carcinomas and neoplasms of the female reproductive tract. Mol Reprod Dev 1997;46(1):71–4. DOI: 10.1002/(SICI)1098-2795(199701)46:1<71::AIDMRD11>3.0.CO;2-6. PMID: 8981366.
38. Lin E.Y., Gouon-Evans V., Nguyen A.V. et al. The macrophage growth factor CSF1 in mammary gland development and tumor progression. J Mammary Gland Biol Neoplasia 2002;7(2):147–62. PMID: 12465600.
39. Smith H.O., Anderson P.S., Kuo D.Y. et al. The role of colony-stimulating factor 1 and its receptor in the etiopathogenesis of endometrial adenocarcinoma. Clin Cancer Res 1995;1(3):313–25. PMID: 9815987.
40. Lewis J.S., Landers R.J., Underwood J.C. et al. Expression of vascular endothelial growth factor by macrophages is up- regulated in poorly vascularized areas of breast carcinomas. J Pathol 2000;192(2):150–8. DOI: 10.1002/1096-9896(2000)9999:9999<::AIDPATH687>3.0.CO;2-G. PMID: 11004690.
41. Eubank T.D., Galloway M., Montague C.M. et al. M-CSF induces vascular endothelial growth factor production and angiogenic activity from human monocytes. J Immunol 2003;171(5):2637–43. PMID: 12928417.
42. Barleon B., Sozzani S., Zhou D. et al. Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1. Blood 1996;87(8):3336–43. PMID: 8605350.
43. Leek R.D., Hunt N.C., Landers R.J. et al. Macrophage infiltration is associated with VEGF and EGFR expression in breast cancer. J Pathol 2000;190(4):430–6. DOI: 10.1002/(SICI)10969896(200003)190:4<430::AIDPATH538>3.0.CO;2-6. PMID: 10699991.
44. Boudreau N., Myers C. Breast cancer-induced angiogenesis: multiple mechanisms and the role of the microenvironment. Breast Cancer Res 2003;5(3):140–6. DOI: 10.1186/bcr589. PMID: 12793895.
45. Miles D.W., Happerfield L.C., Naylor M.S. et al. Expression of tumour necrosis factor (TNF alpha) and its receptors in benign and malignant breast tissue. Int J Cancer 1994;56(6):777–82. PMID: 8119765.
46. Jung Y.J., Isaacs J.S., Lee S. et al. IL-1beta-mediated up-regulation of HIF1alpha via an NFkappaB/COX-2 pathway identifies HIF1 as a critical link between inflammation and oncogenesis. FASEB J 2003;17(14):2115–7. DOI: 10.1096/fj.030329fje. PMID: 12958148.
47. Balkwill F., Mantovani A. Inflammation and cancer: back to Virchow? Lancet 2001;357(9255):539–45. DOI: 10.1016/S0140-6736(00)04046-0. PMID: 11229684.
48. Stacey K.J., Fowles L.F., Colman M.S. et al. Regulation of urokinase-type plasminogen activator gene transcription by macrophage colony-stimulating factor. Mol Cell Biol 1995;15(6):3430–41. PMID: 7760840.
49. Hildenbrand R., Jansen C., Wolf G. et al. Transforming growth factor-beta stimulates urokinase expression in tumor-associated macrophages of the breast. Lab Invest 1998;78(1):59–71. PMID: 9461122.
50. Foekens J.A., Peters H.A., Look M.P. et al. The urokinase system of plasminogen activation and prognosis in 2780 breast cancer patients. Cancer Res 2000;60(3):636–43. PMID: 10676647.
51. Hildenbrand R., Dilger I., Horlin A. et al. Urokinase and macrophages in tumour angiogenesis. Br J Cancer 1995;72(4): 818–23.
52. Hildenbrand R., Glienke W., Magdolen V. et al. Urokinase receptor localization in breast cancer and benign lesions assessed by in situ hybridization and immunohistochemistry. Histochem Cell Biol 1998;110(1):27–32. PMID: 9681686.
53. Fox S.B., Taylor M., Grondahl-Hansen J. et al. Plasminogen activator inhibitor-1 as a measure of vascular remodelling in breast cancer. J Pathol 2001;195(2):236–43. DOI: 10.1002/path.931. PMID: 11592104.
54. Hildenbrand R., Wolf G., Bohme B. et al. Urokinase plasminogen activator receptor (CD87) expression of tumor-associated macrophages in ductal carcinoma in situ, breast cancer, and resident macrophages of normal breast tissue. J Leukoc Biol 1999;66(1):40–9. PMID: 10410988.
55. Knoop A., Andreasen P.A., Andersen J.A. et al. Prognostic significance of urokinasetype plasminogen activator and plasminogen activator inhibitor-1 in primary breast cancer. Br J Cancer 1998;77(6):932–40. PMID: 9528837.
56. Ogmundsdottir H.M., Petursdottir I., Gudmundsdottir I. Interactions between the immune system and breast cancer. Acta Oncol 1995;34(5):647–50. PMID: 7546833.
57. Menard S., Tagliabue E., Campiglio M., Pupa S.M. Role of HER2 gene overexpression in breast carcinoma. J Cell Physiol 2000;182(2):150–62. DOI: 10.1002/(SICI)1097-4652(200002)182:2<150::AIDJCP3>3.0.CO;2-E. PMID: 10623878.
58. Nicholson S., Richard J., Sainsbury C. et al. Epidermal growth factor receptor (EGFr); results of a 6 year follow-up study in operable breast cancer with emphasis on the node negative subgroup. Br J Cancer 1991;63(1):146–50. PMID: 1846551.
59. O'Sullivan C., Lewis C.E., Harris A.L., McGee J.O. Secretion of epidermal growth factor by macrophages associated with breast carcinoma. Lancet 1993;342(8864):148–9. PMID: 8101258.
60. Wyckoff J.B., Segall J.E., Condeelis J.S. The collection of the motile population of cells from a living tumor. Cancer Res 2000;60(19):5401–4. PMID: 11034079.
61. Lin E.Y., Nguyen A.V., Russell R.G., Pollard J.W. Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J Exp Med 2001;193(6): 727–40. PMID: 11257139.
62. Arnott C.H., Scott K.A., Moore R.J. et al. Tumour necrosis factor-alpha mediates tumour promotion via a PKC alpha- and AP-1-dependent pathway. Oncogene 2002;21(31):4728–38. DOI: 10.1038/sj.onc.1205588. PMID: 12101411.
63. Fischer C., Jonckx B., Mazzone M. et al. Anti-PlGF inhibits growth of VEGF(R)inhibitor-resistant tumors without affecting healthy vessels. Cell 2007;131(3): 463–75. DOI: 10.1016/j.cell.2007.08.038. PMID: 17981115.
64. Zhang W., Zhu X.D., Sun H.C. et al. Depletion of tumor-associated macrophages enhances the effect of sorafenib in metastatic liver cancer models by antimetastatic and antiangiogenic effects. Clin Cancer Res 2010;16(13):3420–30. DOI: 10.1158/10780432.CCR-09-2904. PMID: 20570927.
65. Wang F., Yang L., Gao Q. et al. CD163+CD14+ macrophages, a potential immune biomarker for malignant pleural effusion. Cancer Immunol Immunother 2015;64(8):965–76. DOI: 10.1007/s00262-015-1701-9. PMID: 25944005.
66. Andersen M.N., Abildgaard N., Maniec- ki M.B. et al. Monocyte/macrophage-de rived soluble CD163: a novel biomarker in multiple myeloma. Eur J Haemato. 2014;93(1):41–7. DOI: 10.1111/ejh.12296. PMID: 24612259.
67. Tang X. Tumor-associated macrophages as potential diagnostic and prognostic biomarkers in breast cancer. Cancer Lett 2013;332(1):3–10. DOI: 10.1016/j.canlet.2013.01.024. PMID: 23348699.
68. Adams D.L., Martin S.S., Alpaugh R.K. et al. Circulating giant macrophages as a potential biomarker of solid tumors. Proc Natl Acad Sci USA 2014;111(9):3514–9. DOI: 10.1073/pnas.1320198111. PMID: 24550495.
69. Forssell J., Oberg A., Henriksson M.L. et al. High macrophage infiltration along the tumor front correlates with improved survival in colon cancer. Clin Cancer Res 2007;13(5):1472–9. DOI: 10.1158/10780432.CCR-06-2073. PMID: 17332291.
70. Wang B., Xu D., Yu X. et al. Association of intra-tumoral infiltrating macrophages and regulatory T cells is an independent prognostic factor in gastric cancer after radical resection. Ann Surg Oncol 2011;18(9):2585–93. DOI: 10.1245/s10434-011-1609-3. PMID: 21347781.
71. Shimura S., Yang G., Ebara S. et al. Reduced infiltration of tumor-associated macrophages in human prostate cancer: association with cancer progression. Cancer Res 2000;60(20):5857–61. PMID: 11059783.
72. Robinson S.C., Scott K.A., Wilson J.L. et al. A chemokine receptor antagonist inhibits experimental breast tumor growth. Cancer Res 2003;63(23):8360–5. PMID: 14678997.
73. Coscia M., Quaglino E., Iezzi M. et al. Zoledronic acid repolarizes tumour-associated macrophages and inhibits mammary carcinogenesis by targeting the mevalonate pathway. J Cell Mol Med 2010;14(12):2803–15. DOI: 10.1111/j.1582-4934.2009.00926.x. PMID: 19818098.
74. Hamilton J.A., Achuthan A. Colony stimulating factors and myeloid cell biology in health and disease. Trends Immunol 2013;34(2):81–9. DOI: 10.1016/j.it.2012.08.006. PMID: 23000011.
75. Komohara Y., Jinushi M., Takeya M. Clinical significance of macrophage heterogeneity in human malignant tumors. Cancer Sci 2014;105(1):1–8. DOI: 10.1111/cas.12314. PMID: 24168081.
76. Sica A., Mantovani A. Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 2012;122(3):787–95. DOI: 10.1172/JCI59643. PMID: 22378047.
77. Pello O.M., De Pizzol M., Mirolo M. et al. Role of c-Myc in alternative activation of human macrophages and tumorassociated macrophage biology. Blood 2012;119(2):411–21. DOI: 10.1182/blood-2011-02-339911. PMID: 22067385.
78. Satoh T., Takeuchi O., Vandenbon A. et al. The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection. Nature Immunol 2010;11(10):936–44. DOI: 10.1038/ni.1920.
79. Lawrence T., Natoli G. Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat Rev Immunol 2011;11(11):750–61. DOI: 10.1038/nri3088. PMID: 22025054.
80. Germano G., Frapolli R., Belgiovine C. et al. Role of macrophage targeting in the antitumor activity of trabectedin. Cancer Cell 2013;23(2):249–62. DOI: 10.1016/j.ccr.2013.01.008. PMID: 23410977.
81. Gabrusiewicz K., Ellert-Miklaszewska A., Lipko M. et al. Characteristics of the alternative phenotype of microglia/macrophages and its modulation in experimental gliomas. PLoS One 2011;6(8):e23902. DOI: 10.1371/journal.pone.0023902. PMID: 21901144.
82. Rogers T.L., Holen I. Tumour macrophages as potential targets of bisphosphonates. J Transl Med 2011;9:177. DOI: 10.1186/14795876-9-177. PMID: 22005011.
83. van Ginderachter J.A., Movahedi K., Van den Bossche J. et al. Macrophages, PPARs, and Cancer. PPAR Res 2008;2008:169414. DOI: 10.1155/2008/169414.
84. Lewis C., Murdoch C. Macrophage responses to hypoxia: implications for tumor progression and anti-cancer therapies. Am J Pathol 2005;167(3):627–35. DOI: 10.1016/S0002-9440(10)62038-X. PMID: 16127144.
85. Doedens A.L., Stockmann C., Rubin- stein M.P. et al. Macrophage expression of hypoxia-inducible factor-1 alpha suppresses T-cell function and promotes tumor progression. Cancer Res 2010;70(19):7465–75. DOI: 10.1158/0008-5472.CAN-10-1439. PMID: 20841473.
86. Watkins S.K., Egilmez N.K., Suttles J. et al. IL-12 rapidly alters the functional profile of tumor-associated and tumor-infiltrating macrophages in vitro and in vivo. J Immunol 2007;178(3):1357–62. PMID: 17237382.
87. Qian B.Z., Li J., Zhang H. et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 2011;475(7355):222–5. DOI:10.1038/nature10138. PMID: 21654748.
88. Roland C.L., Dineen S.P., Lynn K.D. et al. Inhibition of vascular endothelial growth factor reduces angiogenesis and modulates immune cell infiltration of orthotopic breast cancer xenografts. Mol Cancer Ther 2009;8(7):1761–71. DOI: 10.1158/1535-7163.MCT-09-0280. PMID: 19567820.
Review
For citations:
Gratchev A.N., Samoilova D.V., Rashidova M.A., Petrenko A.A., Kovaleva O.V. Tumor associated macrophages: current research and perspectives of clinical use. Advances in Molecular Oncology. 2018;5(4):20-28. (In Russ.) https://doi.org/10.17650/2313-805X-2018-5-4-20-28