Producing and prospects for the use of bispecific antibodies for the treatment of cancer
https://doi.org/10.17650/2313-805X-2018-5-4-30-40
Abstract
Bispecific antibody molecules contain two different antigen-binding centers. Particular interest in bispecific antibodies is due to their therapeutic application. Two preparations of therapeutic bispecific immunoglobulins, approved for use in the US and European countries, are aimed at the treatment of cancer. Studies published in recent years are devoted to various methods of obtaining monoclonal bispecific antibodies, to study their physicochemical properties, biological activity, preclinical and clinical trials. This paper reviews different approaches to the production of antitumor bispecific immunoglobulins, as well as the prospects for their practical application.
Keywords
About the Authors
S. E. SedykhRussian Federation
8 Akademika Lavrentieva Prospekt, Novosibirsk 630090; 2 Pirogova St., Novosibirsk 630090
G. A. Nevinsky
Russian Federation
8 Akademika Lavrentieva Prospekt, Novosibirsk 630090; 2 Pirogova St., Novosibirsk 630090
References
1. Deyev S.M., Lebedenko E.N. Modern technologies for creating synthetic antibodies for clinical application. Acta Naturae 2009;1(1):32—50. PMID: 22649585.
2. Redman J.M., Hill E.M., AlDeghaither D., Weiner LM. Mechanisms of action of therapeutic antibodies for cancer. Mol Immunol 2015;67(2):28—45. DOI: 10.1016/j.molimm.2015.04.002. PMID: 25911943.
3. Deyev S.M., Lebedenko E.N., Petrovskaya L.E. et al. Man-made antibodies and immunoconjugates with desired properties: function optimization using structural engineering. Russian Chemical Reviews 2015;84(1):1—26. DOI: 10.1070/RCR4459.
4. Vasilenko E.A., Mokhonov V.V., Gorshkova E.N., Astrakhantseva I.V Bispecific antibodies: types and applications. Molekulyarnaya bi-ologiya = Molecular Biology 2018;52(3):380—93. (In Russ.) DOI: 10.7868/S0026898418030035
5. Zhang X., Yang Y., Fan D., Xiong D. The development of bispecific antibodies and their applications in tumor immune escape. Exp Hematol Oncol 2017;6(1):12. DOI: 10.1186/s40164-017-0072-7. PMID: 28469973.
6. Kontermann R. Dual targeting strategies with bispecific antibodies. MAbs 2012;4(2):182—97. DOI: 10.4161/mabs.4.2.19000. PMID: 22453100.
7. Sedykh S., Prinz V., Buneva V., Nevinsky G. Bispecific antibodies: design, therapy, perspectives. Drug Design, Development and Therapy 2018;12:195-208. DOI: 10.2147/DDDT.S151282.
8. Spiess C., Zhai Q., Carter PJ. Alternative molecular formats and therapeutic applications for bispecific antibodies. Mol Immunol 2015;67(2):95—106. DOI: 10.1016/j.molimm.2015.01.003. PMID: 25637431.
9. Wu C., Ying H., Grinnell C. et al. Simultaneous targeting of multiple disease mediators by a dual-variable-domain immunoglobulin. Nat Biotechnol 2007;25(11):1290—7. DOI: 10.1038/nbt1345. PMID: 17934452.
10. Jakob C.G., Edalji R., Judge R. et al. Structure reveals function of the dual variable domain immunoglobulin (DVD-IgTM) molecule. MAbs 2013;5(3): 358—63. DOI: 10.4161/mabs.23977. PMID: 23549062.
11. Hu S., Fu W., Xu W. et al. Four-in-one antibodies have superior cancer inhibitory activity against EGFR, HER2, HER3, and VEGF through disruption of HER/MET crosstalk. Cancer Res 2015;75(1):159—70. DOI: 10.1158/0008-5472.CAN-14-1670. PMID: 25371409.
12. Correia I., Sung J., Burton R. et al. The structure of dual-variable-domain immunoglobulin molecules alone and bound to antigen. MAbs 2013;5(3):364—72. DOI: 10.4161/mabs.24258. PMID: 23572180.
13. Brennan M., Davison P.F., Paulus H. Preparation of bispecific antibodies by chemical recombination of monoclonal immunoglobulin G1 fragments. Science (New York, NY) 1985;229(4708):81—3.
14. Doppalapudi V.R,. Tryder N., Li L. et al. Chemically programmed antibodies: En-dothelin receptor targeting CovX-Bodies-TM. Bioorg Med Chem Lett 2007;17(2):501—6. DOI: 10.1016/j.bmcl.2006.10.009. PMID: 17055724.
15. Lum L.G., Thakur A., Liu Q. et al. CD20-targeted T cells after stem cell transplantation for high risk and refractory non-Hodgkin’s lymphoma. Biol Blood Marrow Transplant 2013;19(6):925—33. DOI: 10.1016/j.bbmt.2013.03.010. PMID: 23529012.
16. Chang C.H., Rossi E.A., Goldenberg D.M. The dock-and-lock method: a novel platform technology for building multivalent, multifunctional structures of defined composition with retained bioactivity. Clin Cancer Res 2007;13(18):5586s—91s. DOI: 10.1158/1078-0432.CCR-07-1217.
17. Rossi E.A., Goldenberg D.M., Cardillo T.M. et al. Hexavalent bispecific antibodies represent a new class of anticancer therapeutics: 1. Properties of anti-CD20/CD22 antibodies in lymphoma. Blood 2009;113(24):6161—71. DOI: 10.1182/blood-2008-10-187138. PMID: 19372261.
18. Rossi E.A., Rossi D.L., Stein R. et al. A bispecific antibody-ifn 2b immunocyto-kine targeting CD20 and HLA-DR is highly toxic to human lymphoma and multiple myeloma cells. Cancer Res 2010;70(19):7600—9. DOI: 10.1158/0008-5472.CAN-10-2126.
19. Rossi D.L., Rossi E.A., Cardillo T.M. et al. A new class of bispecific antibodies to redirect T cells for cancer immunotherapy. MAbs 2014;6(2):381 —91. DOI: 10.4161/mabs.27385. PMID: 24492297.
20. Mhller D., Karle A., MeiBburger B. et al. Improved pharmacokinetics of recombinant bispecific antibody molecules by fusion to human serum albumin. J Biol Chem 2007;282(17):12650—60. DOI: 10.1074/jbc.M700820200. PMID: 17347147.
21. Chelius D., Ruf P., Gruber P. et al. Structural and functional characterization of the trifunctional antibody catumaxomab. MAbs 2010;2(3):309—19. DOI: 10.4161/mabs.2.3.11791. PMID: 20418662.
22. Atwell S., Ridgway J.B., Wells JA., Carter P. Stable heterodimers from remodeling the domain interface of a homodimer using a phage display library. J Mol Biol 1997;270(1):26—35. DOI: 10.1006/jmbi.1997.ni6. PMID: 9231898.
23. Rispens T., Meesters J., den Bleker T.H. et al. Fc-Fc interactions of human IgG4 require dissociation of heavy chains and are formed predominantly by the intrachain hinge isomer. Mol Immunol 2013;53(1—2):35—42. DOI: 10.1016/j.mo-limm.2012.06.012. PMID: 22784992.
24. Bostrom J., Yu S.F., Kan D. et al. Variants of the antibody herceptin that interact with HER2 and VEGF at the antigen binding site. Science 2009;323(5921):1610—4. DOI: 10.1126/science.1165480. PMID: 19299620.
25. Schaefer G., Haber L., Crocker L.M. et al. A Two-in-one antibody against HER3 and EGFR has superior inhibitory activity compared with monospecific antibodies. Cancer Cell 2011;20(4):472-86. DOI: 10.1016/j.ccr.2011.09.003. PMID: 22014573.
26. Baeuerle P.A., Kufer P., Bargou R. BiTE: Teaching antibodies to engage T-cells for cancer therapy. Curr Opin Mol Ther 2009;11(1):22—30. PMID: 19169956.
27. Dreier T., Lorenczewski G., Brandl C. et al. Extremely potent, rapid and costimulation-independent cytotoxic T-cell response against lymphoma cells catalyzed by a single-chain bispecific antibody. Int J Cancer 2002;100(6):690-7. DOI: 10.1002/ijc.10557. PMID: 12209608.
28. Haas C., Krinner E., Brischwein K. et al. Mode of cytotoxic action of T cell-engaging BiTE antibody MT110. Immunobiology 2009;214(6):441-53. DOI: 10.1016/j.imbio.2008.11.014. PMID: 19157637.
29. Davies J., Riechmann L. Antibody VH domains as small recognition units. Biotechnology 1995;13(5):475—9. PMID: 9634788.
30. Els Conrath K., Lauwereys M., Wyns L., Muyldermans S. Camel single-domain antibodies as modular building units in bispecific and bivalent antibody constructs. J Biol Chem 2001;276(10):7346-50. DOI: 10.1074/jbc.M007734200. PMID: 11053416.
31. Kontermann R.E., Brinkmann U. Bispecific antibodies. Drug Discov Today 2015;20(7):838—47. DOI: 10.1016/j.drudis.2015.02.008. PMID: 25728220.
32. Rothe A., Sasse S., Topp M.S. et al. A phase 1 study of the bispecific anti-CD30/CD16A antibody construct AFM13 in patients with relapsed or refractory Hodgkin lymphoma. Blood 2015;125(26):4024—31. DOI: 10.1182/blood-2014-12-614636. PMID: 25887777.
33. Thakur A., Lum L.G. “NextGen” biologics: bispecific antibodies and emerging clinical results. Expert Opin Biol Ther 2016;16(5):675-88. DOI: 10.1517/14712598.2016.1150996. PMID: 26848610.
34. Bargou R., Leo E., Zugmaier G. et al. Tumor regression in cancer patients by very low doses of a T cell-engaging antibody. Science 2008;321(5891):974-7. DOI: 10.1126/science.1158545. PMID: 18703743.
35. Nunez-Prado N., Compte M., Harwood S. et al. The coming of age of engineered multivalent antibodies. Drug Discov Today 2015;20(5):588—94. DOI: 10.1016/j.drudis.2015.02.013. PMID: 25757598.
36. Loffler A., Kufer P., LutterbUse R. et al. A recombinant bispecific single-chain antibody, CD19 x CD3, induces rapid and high lymphoma-directed cytotoxicity by unstimulated T lymphocytes. Blood 2000;95(6):2098—103. PMID: 10706880.
37. Wu J., Fu J., Zhang M., Liu D. Blinatu-momab: a bispecific T cell engager (BiTE) antibody against CD19/CD3 for refractory acute lymphoid leukemia. J Hematol Oncol 2015;8:104. DOI: 10.1186/s13045-015-0195-4. PMID: 26337639.
38. Goebeler M.E., Bargou R. Blinatumomab: a CD19/CD3 bispecific T cell engager (BiTE) with unique anti-tumor efficacy. Leuk Lymphoma 2016;57(5):1021—32. DOI: 10.3109/10428194.2016.1161185. PMID: 27050240.
39. Topp M.S., Gokbuget N., Zugmaier G. et al. Long-term follow-up of hematologic relapse-free survival in a phase 2 study of blinatumomab in patients with MRD in B-lineage ALL. Blood 2012;120(26):5185-7. DOI: 10.1182/blood-2012-07-441030. PMID: 23024237.
40. Topp M.S., Gokbuget N., Zugmaier G. et al. Phase II trial of the anti-CD19 bispecific T cell-engager blinatumomab shows hematologic and molecular remissions in patients with relapsed or refractory B-precursor acute lymphoblastic leukemia. J Clin Oncol 2014;32(36):4134—40. DOI: 10.1200/JCO.2014.56.3247.
41. Topp M.S., Kufer P., Gokbuget N. et al. Targeted therapy with the T-cell-engaging antibody blinatumomab of chemotherapy-refractory minimal residual disease in B-lineage acute lymphoblastic leukemia patients results in high response rate and prolonged leukemia-free Survival. J Clin Oncol 2011;29(18):2493—8. DOI: 10.1200/JCO.2010.32.7270. PMID: 21576633.
42. Aldoss I., Song J., Stiller T. et al. Correlates of resistance and relapse during blina-tumomab therapy for relapsed/refractory acute lymphoblastic leukemia. Am J He-matol 2017;92(9):858—65. DOI: 10.1002/ajh.24783. PMID: 28494518.
43. Klinger M., Brandl C., Zugmaier G. et al. Immunopharmacologic response of patients with B-lineage acute lymphoblastic leukemia to continuous infusion of T cell-engaging CD19/CD3-bispecific BiTE antibody blinatumomab. Blood 2012;119(26):6226—33. DOI: 10.1182/blood-2012-01-400515. PMID: 22592608.
44. Frankel S.R., Baeuerle P.A. Targeting T cells to tumor cells using bispecific antibodies. Curr Opin Chem Biol 2013;17(3):385—92. DOI: 10.1016/j.cbpa.2013.03.029. PMID: 23623807.
45. Heiss M.M., Murawa P., Koralewski P. et al. The trifunctional antibody catumax-omab for the treatment of malignant ascites due to epithelial cancer: Results of a prospective randomized phase II/III trial. Int J Cancer 2010;127(9):2209—21. DOI: 10.1002/ijc.25423. PMID: 20473913.
46. Seimetz D., Lindhofer H., Bokemeyer C. Development and approval of the trifunctional antibody catumaxomab (anti-EpCAMxanti-CD3) as a targeted cancer immunotherapy. Cancer Treat Rev 2010;36(6):458—67. DOI: 10.1016/j.ctrv.2010.03.001.
47. Linke R., Klein A., Seimetz D. Catumaxomab: clinical development and future directions. MAbs 2010;2(2):129—36. DOI: 10.4161/mabs.2.2.11221. PMID: 20190561.
48. Chames P., Baty D. Bispecific antibodies for cancer therapy: the light at the end of the tunnel? MAbs 2009;1(6):539—47. PMID: 20073127.
49. Lindhofer H., Mocikat R., Steipe B., Thi-erfelder S. Preferential species-restricted heavy/light chain pairing in rat/mouse quadromas. Implications for a single-step purification of bispecific antibodies. J Immunol 1995;155(1):219—25. PMID: 7602098.
50. Ruf P. Induction of a long-lasting antitumor immunity by a trifunctional bispecific antibody. Blood 2001;98(8):2526—34. DOI: 10.1182/blood.V98.8.2526. PMID: 11588051.
51. Ott M.G., Marme F., Moldenhauer G. et al. Humoral response to catumaxomab correlates with clinical outcome: results of the pivotal phase II/III study in patients with malignant ascites. Int J Cancer 2012;130(9):2195—203. DOI: 10.1002/ijc.26258. PMID: 21702044.
52. van der Neut Kolfschoten M., Schuurman J., Losen M. et al. Anti-inflammatory activity of human IgG4 antibodies by dynamic Fab arm exchange. Science 2007;317(5844):1554-7. DOI: 10.1126/science.1144603. PMID: 17872445.
53. Labrijn A.F., Meesters J.I., de Goeij B.E. et al. Efficient generation of stable bispecific IgG1 by controlled Fab-arm exchange. Proc Natl Acad Sci USA 2013;110(13):5145-50. DOI: 10.1073/pnas.1220145110. PMID: 23479652.
54. Patterson J.T., Gros E., Zhou H. et al. Chemically generated IgG2 bispecific antibodies through disulfide bridging. Bioorg Med Chem Lett 2017;27(16):3647—52. DOI: 10.1016/j.bmcl.2017.07.021. PMID: 28720505.
55. Sedykh S.E., Buneva V.N., Nevinsky G.A. Human milk IgGs contain various combinations of different antigen-binding sites resulting in multiple variants of their bispecificity. PloS One 2012;7(8):e42942. DOI: 10.1371/journal.pone.0042942. PMID: 22912765.
56. Sedykh S.E., Buneva V.N., Nevinsky G.A. Human milk sIgA molecules contain various combinations of different antigenbinding sites resulting in a multiple binding specificity of antibodies and enzymatic activities of abzymes. PloS One 2012;7(11):e48756. DOI: 10.1371/journal.pone.0048756. PMID: 23133657.
57. Sedykh S.E., Lekchnov E.A., Prince V.V. et al. Half molecular exchange of IgGs in the blood of healthy humans: chimeric lambda-kappa-immunoglobulins containing HL fragments of antibodies of different subclasses (IgG1–IgG4). Mol Biosyst 2016;12(10):3186–95. DOI: 10.1039/C6MB00479B. PMID: 27506137.
58. Labrijn A.F., Buijsse A.O., van den Bremer E.T.J. et al. Therapeutic IgG4 antibodies engage in Fab-arm exchange with endogenous human IgG4 in vivo. Nat Biotechnol 2009;27(8): 767–71. DOI: 10.1038/nbt.1553. PMID: 19620983.
Review
For citations:
Sedykh S.E., Nevinsky G.A. Producing and prospects for the use of bispecific antibodies for the treatment of cancer. Advances in Molecular Oncology. 2018;5(4):30-40. (In Russ.) https://doi.org/10.17650/2313-805X-2018-5-4-30-40