Preview

Advances in Molecular Oncology

Advanced search

Small GTPase Rab3B: biological properties and possible role in carcinogenesis

https://doi.org/10.17650/2313-805X-2018-5-4-78-85

Abstract

Proteins of the superfamily of small guanosine triphosphate hydrolase (GTPase) perform various functions: from the control of cell proliferation to the regulation of vesicular transport. The superfamily of small GTPase Ras includes more than 150 proteins, devided to 5 major families (Arf, Ran, Rho, Ras and Rab), and plays an important role in carcinogenesis. Compared to the other families, the Rab family was investigated by relatively small number studies, which does not equally reflect their role in malignant transformation processes. In our review  we have focused on both the subfamily Rab3 and its poorly investigated member Rab3B. Recent findings allow to consider Rab3B not only  as a promising diagnostic or prognostic marker for several types of neoplasms, but also is a potential target for antitumor therapy. Our analysis of publicly available transcriptional databases revealed that kidney, lung and liver cancer patients with low Rab3B gene expression demonstrate a better overall five-year survival.

About the Authors

A. A. Budko
Research Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia; M.V. Lomonosov Moscow State University
Russian Federation

Faculty of Fundamental Medicine M.V. Lomonosov MSU.

24 Kashirskoe Shosse, Moscow 115478; Build. 1, 27 Lomonosovskiy Proezd, Moscow 119192



P. A. Khesina
Research Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia; M.V. Lomonosov Moscow State University
Russian Federation

Biological Faculty M.V. Lomonosov MSU.

24 Kashirskoe Shosse, Moscow 115478; Build. 12, 1 Leninskie Gory, Moscow 119234



L. M. Diakov
Research Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation

24 Kashirskoe Shosse, Moscow 115478



N. L. Lazarevich
Research Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia; M.V. Lomonosov Moscow State University
Russian Federation

Biological Faculty M.V. Lomonosov MSU.

24 Kashirskoe Shosse, Moscow 115478; Build. 12, 1 Leninskie Gory, Moscow 119234



References

1. Boume H.R., Sanders D.A., McCormick F. The GTPase superfamily: a conserved switch for diverse cell functions. Nature 1990;348(6297):125—32. DOI: 10.1038/348125a0. PMID: 2122258.

2. Bourne H.R., Sanders D.A., McCormick F. The GTPase superfamily: conserved structure and molecular mechanism. Nature 1991;349(6305):117—27. DOI: 10.1038/349117a0. PMID: 1898771.

3. Yang Z. Small GTPases: versatile signaling switches in plants. Plant Cell 2002;1: 375-88. PMID: 12045289.

4. Wennerberg K., Rossman K.L., De C.J. The Ras superfamily at a glance. J Cell Sci 2005;118(5):843—66. DOI: 10.1242/jcs.01660. PMID: 15731001.

5. Downward J. Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer 2003;3(1):11—32. DOI: 10.1038/nrc969. PMID: 12509763.

6. Ellenbroek S.I., Collard J.G. Rho GTPases: functions and association with cancer. Clin Exp Metastasis 2007;24(8):657—72. DOI: 10.1007/s10585-007-9119-1. PMID: 18000759.

7. Boulay P.L., Schlienger S., Lewis-Saravalli S. et al. ARF1 controls proliferation of breast cancer cells by regulating the retinoblastoma protein. Oncogene 2011;30(36): 30—6. DOI: 10.1038/onc.2011.100. PMID: 21478909.

8. Matchett K.B., McFarlane S., Hamilton S.E. et al. Ran GTPase in nuclear envelope formation and cancer metastasis. Adv Exp Med Biol 2014;773:323-51. DOI: 10.1007/978-1-4899-8032-8_15. PMID: 24563355.

9. Tzeng H.T., Wang Y.C. Rab-mediated vesicle trafficking in cancer. J Biomed Sci 2016;23(1):70—6. DOI: 10.1186/s12929-016-0287-7. PMID: 27716280.

10. Li G., Marlin M.C. Rab family of GTPases. Methods Mol Biol 2015;1298:1 —15. DOI: 10.1007/978-1-4939-2569-8_1. PMID: 25800828.

11. Cheng K.W., Lahad J.P., Kuo W.L. et al. The RAB25 small GTPase determines aggressiveness of ovarian and breast cancers. Nat Med 2004;10(11):1251—6. DOI: 10.1038/nm1125. PMID: 15502842.

12. Nam K.T., Lee H.J., Smith J.J. et al. Loss of Rab25 promotes the development of intestinal neoplasia in mice and is associated with human colorectal adenocarcinomas. J Clin Invest 2010;120(3):840—9. DOI: 10.1172/JCI40728. PMID: 20197623.

13. Dozynkiewicz M.A., Jamieson N.B., Macpherson I. et al. Rab25 and CLIC3 collaborate to promote integrin recycling from late endosomes/lysosomes and drive cancer progression. Dev Cell 2012;22(1):131—45. DOI: 10.1016/j.dev-cel.2011.11.008. PMID: 22197222.

14. Rodrigues M.L., Pereira-Leal J.B. Novel Rab GTPases. Rab GTPases and Membrane Trafficking 2012;155—68. DOI: 10.2174/97816080536501120101.

15. Savina A., Vidal M., Colombo M.I. The exosome pathway in K562 cells is regulated by Rab11. J Cell Sci 2002;115(12):2505—15. PMID: 12045221.

16. Ostenfeld M.S., Jeppesen D.K., Laurberg J.R. et al. Cellular disposal of miR23b by RAB27-dependent exosome release is linked to acquisition of metastatic properties. Cancer Res 2014;74(20):5758—71. DOI: 10.1158/0008-5472.CAN-13-3512. PMID: 25261234.

17. Lacy P., Thompson N., Tian M. et al. A survey of GTP-binding proteins and other potential key regulators of exocytotic secretion in eosinophils. Apparent absence of rab3 and vesicle fusion protein homo-logues. J Cell Sci 1995;108(11):3547—56. PMID: 8586666.

18. Yang J., Lu W.L.X., Fu Y. et al. High expression of small GTPase Rab3D promotes cancer progression and metastasis. Onco-target 2015;6(13):11125—38. DOI: 10.18632/oncotarget.3575. PMID: 25823663.

19. Kim J.K., Lee S.Y., Park C.W. et al. Rab3a promotes brain tumor initiation and progression. Mol Biol Rep 2014;41(9):5903— 11. DOI: 10.1007/s11033-014-3465-2. PMID: 24965146.

20. Lankat-Buttgereit B., Fehmann H.C., Hering B.J. et al. Expression of the ras-related rab3a gene in human insulinomas and normal human pancreatic islets. Pancreas 1994;9(4):434—8. PMID: 7524063.

21. Chang Y.C., Su C.Y., Chen M.H. et al. Secretory RAB GTPase 3C modulates IL6-STAT3 pathway to promote colon cancer metastasis and is associated with poor prognosis. Mol Cancer 2017;16(1): 135—46. DOI: 10.1186/s12943-017-0687-7. PMID: 28784136.

22. Rousseau-Merck M.F., Zahraoui A., Touchot N. et al. Chromosome assignment of four RAS-related RAB genes. Hum Genet 1991;86(4):350—4. PMID: 1999336.

23. Moeller L.C., Dumitrescu A.M., Walker R.L. et al. Thyroid hormone responsive genes in cultured human fibroblasts. J Clin Endocrinol Metab 2004;90(2):936—43. DOI: 10.1210/jc.2004-1768. PMID: 15507505.

24. Wang T., Xia L., Ma S. et al. Hepatocellular carcinoma: thyroid hormone promotes tumorigenicity through inducing cancer stem-like cell self-renewal. Sci Rep 2016;6:240—5. DOI: 10.1038/srep25183. PMID: 27174710.

25. Tan P.Y., Chang C.W., Chng K.R. et al. Integration of regulatory networks by NKX3-1 promotes androgen-dependent prostate cancer survival. Mol Cell Biol 2012;32(2):399—414. DOI: 10.1128/MCB.05958-11. PMID: 22083957.

26. Piper Hanley K., Hearn T., Berry A. et al. In vitro expression of NGN3 identifies RAB3B as the predominant Ras-associated GTP-binding protein 3 family member in human islets. J Endocrinol 2010;207(2):151—61. DOI: 10.1677/JOE-10-0120. PMID: 20807725.

27. Manabe S., Nishimura N., Yamamoto Y. et al. Identification and characterization of Noc2 as a potential Rab3B effector protein in epithelial cells. Biochem Biophys Res Commun 2004;316(1):218—25. DOI: 10.1016/j.bbrc.2004.02.026. PMID: 15003533.

28. Sunshine C., Francis S., Kirk K.L. Rab3B regulates ZO-1 targeting and actin organization in PC12 neuroendocrine cells. Exp Cell Res 2000;257(1):1 — 10. DOI: 10.1006/excr.2000.4855. PMID: 10854049.

29. Nishimura N., Araki K., Shinahara W. et al. Interaction of Rab3B with microtubule-binding protein Gas8 in NIH 3T3 cells. Arch Biochem Biophys 2008;474(1):136—42. DOI: 10.1016/j.abb.2008.03.032. PMID: 18396146.

30. Lu Y., Ye Y., Bao W. et al. Genome-wide identification of genes essential for podo-cyte cytoskeletons based on single-cell RNA sequencing. Kidney Int 2017;92(5):1119—29. DOI: 10.1016/j.kint.2017.04.022. PMID: 28709640.

31. Song L., Webb N.E., Song Y., Tuan R.S. Identification and functional analysis of candidate genes regulating mesenchymal stem cell self-renewal and multipotency. Stem Cells 2006;24(7):1707—18. DOI: 10.1634/stemcells.2005-0604. PMID: 16574750.

32. Chung S.H., Joberty G., Gelino E.A. et al. Comparison of the effects on secretion in chromaffin and PC12 cells of Rab3 family members and mutants. Evidence that inhibitory effects are independent of direct interaction with Rabphilin-3. J Biol Chem 1999;274(25):18113—2.0. PMID: 10364266.

33. Gowri A.M., Kavitha G., Rajasundari M. et al. Foetal stem cell derivation & characterization for osteogenic lineage. Indian J Med Res 2013;137(2):308—15. PMID: 23563374.

34. Isacson O. Rab3B for the Treatment and Prevention of Parkinson’s Disease. USA Патент MCL 3345.0; 2012.

35. Liu Q., Tang H., Liu X. et al. miR-200b as a prognostic factor targets multiple members of RAB family in glioma. Med Oncol 2014;31(3):859—67. DOI: 10.1007/s12032-014-0859-x. PMID: 24477653.

36. Ye F., Tang H., Liu Q. et al. miR-200b as a prognostic factor in breast cancer targets multiple members of RAB family. J Transl Med 2014;12:17. DOI: 10.1186/1479-5876-12-17. PMID: 24447584.

37. Wang L., Skotland T., Berge V. et al. Exo-somal proteins as prostate cancer biomarkers in urine: from mass spectrometry discovery to immunoassay-based validation. Eur J Pharm Sci 2017;98:80-5. DOI: 10.1016/j.ejps.2016.09.023. PMID: 27664330.

38. Rotondo F., Scheithauer B.W., Kovacs K., Bell D.C. Rab3B immunoexpression in human pituitary adenomas. Appl Immunohistochem Mol Morphol 2009;17(3):185—8. DOI: 10.1097/PAI.0b013e31818fa0ed. PMID: 19384079.

39. Nishioka H., Haraoka J. Significance of immunohistochemical expression of Rab3B and SNAP-25 in growth hormone-producing pituitary adenomas. Acta Neuropathol 2005;109(6):598—602. DOI: 10.1007/s00401-005-1008-6. PMID: 15895198.

40. Zhang C., Min L., Zhang L. et al. Combined analysis identifies six genes correlated with augmented malignancy from non-small cell to small cell lung cancer. Tumour Biol 2015;37(2):2193—207. DOI: 10.1007/s13277-015-3938-5. PMID: 26349752.


Review

For citations:


Budko A.A., Khesina P.A., Diakov L.M., Lazarevich N.L. Small GTPase Rab3B: biological properties and possible role in carcinogenesis. Advances in Molecular Oncology. 2018;5(4):78-85. (In Russ.) https://doi.org/10.17650/2313-805X-2018-5-4-78-85

Views: 1117


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2313-805X (Print)
ISSN 2413-3787 (Online)