MicroRNA: sex steroids, hormonal carcinogenesis, hormonal sensitivity of tumor tissue
https://doi.org/10.17650/2313-805X.2015.2.1.004-012
Abstract
Sex hormones, regulating normal physiological processes of most tissues and organs, are considered to be one of the key factors in the development and progression of the reproductive system cancer. Recently, the importance of the system for post-transcriptional control of gene expression mediated by short single-stranded RNA molecules (microRNA) became evident. This system is involved in regulation of normal physiological processes and in the pathogenesis of many diseases, including cancer. In review we discuss the relationship between the two regulatory systems – sex hormones and microRNAs. The relationship of these systems is considered in the context of two tumors – breast and prostate cancer. In particular, the history of research on the role of sex hormones in the pathogenesis of breast cancer and prostate cancer is briefly covered. Additionally, modern scientific data on the biogenesis and biological role of microRNAs are presented in more detail. In the cells of the hormone-sensitive tissues, sex hormones regulate the microRNA-mediated machinery of gene expression control by two known ways: specifically, affecting the activity of individual microRNA molecules and non-specifically by altering the efficiency of microRNA biogenesis and activity of RNA-induced silencing complex. This downstream regulatory network substantially enhances biological effects of sex hormones at physiological conditions. Malignant transformation leads to a distortion of the regulatory effects of sex hormones that crucially influence the system of microRNA-regulated post-transcriptional control of gene expression. The most established and clinically significant example of such phenomenon is the loss of sensitivity of cells to the regulatory action of these hormones. As a consequence, cancer cells acquire the ability to active proliferation without stimulation with sex hormones. This effect is partly mediated by microRNAs. Also, relevant experimental data indicating the involvement of microRNAs in the phenomenon of breast cancer and prostate cancer cells hormone resistance are discussed in the review.
Conception of the possible primary role of microRNAs in the process of malignant transformation and distortion of hormonal regulation is based on a smaller number of scientific reports. In general, in accordance with the main biological role of microRNAs, latter may affect sex hormones function via interaction with the mRNAs of hormone receptors and inhibition of their synthesis. As a result, the effect of many microRNA is converging on the single mRNA, results in suppression of corresponding protein function and, in the end, leads to inhibition of regulatory cascade downstream of sex steroids.
Finally, the analysis of the fundamental aspects of sex hormones – microRNA interplay is supplemented by brief overview of clinically significant problems. The prospects for development and introduction into clinical practice innovative methods of diagnosis, prediction and optimization of therapy of breast and prostate cancers are discussed as well.
About the Authors
A. V. MalekRussian Federation
68 Leningradskaya St., Pesochniy, St. Petersburg, 197758, Russia;
Orlova roshcha, Gatchina, Leningrad region, 188300, Russia
L. M. Bershtein
Russian Federation
68 Leningradskaya St., Pesochniy, St. Petersburg, 197758, Russia;
References
1. Берштейн Л.М. Гормональный канцерогенез. СПб.: Наука, 2000. 199 с. [Berstein L.M. Hormonal carcinogenesis. St. Petersburg: Science, 2000. 199 p. (In Russ.)].
2. Risbridger G.P., DavisI.D., Birrell S.N. et al. Breast and prostate cancer: more similar than different. Nat Rev Cancer 2010;10(3):205–12.
3. Roop R.P., Ma C.X. Endocrine resistance in breast cancer: molecular pathways and rational development of targeted therapies. Future Oncol 2012;8(3):273–92.
4. Красильников М.А., Щербаков А.М. Сигнальные пути, регулируемые эстрогенами, и их роль в опухолевой прогрессии: новые факты и направления поиска. Успехи молекулярной онкологии 2014;1(1):18–26. [Krasil,nikov M.A., Shcherbakov A.M. Estrogen-dependent signaling pathways and their role in the tumor progression: progress and perspectives. Uspekhi molekulyarnoy onkologii = Advances in Molecular Oncology 2014;1(1):18–26. (In Russ.)].
5. Fletcher C.E., Dart D.A., Bevan C.L. Interplay between steroid signalling and microRNAs: implications for hormone-dependent cancers. Endocr Relat Cancer 2014;21(5):R409–29.
6. Cochrane D.R., Cittelly D.M., Richer J.K. Steroid receptors and microRNAs: relationships revealed. Steroids 2011;76(1–2):1–10.
7. Ottaviani S., de Giorgio A., Harding V. et al. Noncoding RNAs and the control of hormonal signaling via nuclear receptor regulation. J Mol Endocrinol 2014;53(2):R61–70.
8. Gregory R.I., Yan K.P., Amuthan G. et al. The Microprocessor complex mediates the genesis of microRNAs. Nature 2004;432(7014):235–40.
9. Finnegan E.F., Pasquinelli A.E. MicroRNA biogenesis: regulating the regulators. Crit Rev Biochem Mol Biol 2013;48(1):51–68.
10. Kawamata T., Tomari Y. Making RISC. Trends Biochem Sci 2010;35(7):368–76.
11. Kawamata T., Seitz H., Tomari Y. Structural determinants of miRNAs for RISC loading and slicerindependent unwinding. Nat Struct Mol Biol 2009;16(9):953–60.
12. Friedman R.C., Farh K.K., Burge C.B. et al. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 2009;19(1):92–105.
13. Kavitha N., Vijayarathna S., Jothy S.L. et al. MicroRNAs: biogenesis, roles for carcinogenesis and as potential biomarkers for cancer diagnosis and prognosis. Asian Pac J Cancer Prev 2014;15(18):7489–97.
14. Pulito C., Donzelli S., Muti P. et al. microRNAs and cancer metabolism reprogramming: the paradigm of metformin. Ann Transl Med 2014;2(6):58.
15. Ibrahim S.A., Hassan H., Gotte M. MicroRNA regulation of proteoglycan function in cancer. FEBS J 2014;281(22):5009–22.
16. Gadaleta R.M., Magnani L. Nuclear receptors and chromatin: an inducible couple. J Mol Endocrinol 2014;52(2):R137–49.
17. Castellano L., Giamas G., Jacob J. et al. The estrogen receptor-alpha-induced microRNA signature regulates itself and its transcriptional response. Proc Natl Acad Sci USA 2009;106(37):15732–7.
18. Bhat-Nakshatri P., Wang G., Collins N.R. et al. Estradiol-regulated microRNAs control estradiol response in breast cancer cells. Nucleic Acids Res 2009;37(14):4850–61.
19. Pinho F.G., Frampton A.E., Nunes J. et al. Downregulation of microRNA-515-5p by the estrogen receptor modulates sphingosine kinase 1 and breast cancer cell proliferation. Cancer Res 2013;73(19): 5936–48.
20. Yamagata K., Fujiyama S., Ito S. et al. Maturation of microRNA is hormonally regulated by a nuclear receptor. Mol Cell 2009;36(2):340–7.
21. Nothnick W.B., Healy C., Hong X. Steroidal regulation of uterine miRNAs is associated with modulation of the miRNA biogenesis components Exportin-5 and Dicer1. Endocrine 2010;37(2):265–73.
22. Cochrane D.R., Cittelly D.M., Howe E.N. et al. MicroRNAs link estrogen receptor alpha status and Dicer levels in breast cancer. Horm Cancer 2010;1(6): 306–19.
23. Cheng C., Fu X., Alves P. et al. mRNA expression profiles show differential regulatory effects of microRNAs between estrogen receptor-positive and estrogen receptor-negative breast cancer. Genome Biol 2009;10(9):R90.
24. Adams B.D., Claffey K.P., White B.A. Argonaute-2 expression is regulated by epidermal growth factor receptor and mitogen-activated protein kinase signaling and correlates with a transformed phenotype in breast cancer cells. Endocrinology 2009;150(1):14–23.
25. Narayanan R., Jiang J., Gusev Y. et al. MicroRNAs are mediators of androgen action in prostate and muscle. PloS One 2010;5(10):e13637.
26. Porkka K.P., Pfeiffer M. J., Waltering K.K. et al. MicroRNA expression profiling in prostate cancer. Cancer Res 2007;67(13):6130–5.
27. Ambs S., Prueitt R.L., Yi M. et al. Genomic profiling of microRNA and messenger RNA reveals deregulated microRNA expression in prostate cancer. Cancer Res 2008;68(15):6162– 70.
28. Ozen M., Creighton C. J., Ozdemir M. et al. Widespread deregulation of microRNA expression in human prostate cancer. Oncogene 2008;27(12):1788–93.
29. Waltering K.K., Porkka K.P., Jalava S.E. et al. Androgen regulation of micro-RNAs in prostate cancer. Prostate 2011; 71(6):604–14.
30. Ribas J., Ni X., Haffner M. et al. miR-21: an androgen receptor-regulated microRNA that promotes hormone-dependent and hormone-independent prostate cancer growth. Cancer Res 2009;69(18):7165–9.
31. Shi X.B., Xue L., Yang J. et al. An androgen-regulated miRNA suppresses Bak1 expression and induces androgenindependent growth of prostate cancer cells. Proc Natl Acad Sci USA 2007;104(50):19983–8.
32. Xiao J., Gong A.Y., Eischeid A.N. et al. miR-141 modulates androgen receptor transcriptional activity in human prostate cancer cells through targeting the small heterodimer partner protein. Prostate 2012;72(14):1514–22.
33. Fletcher C.E., Dart D.A., SitaLumsden A. et al. Androgen-regulated processing of the oncomir miR-27a, which targets Prohibitin in prostate cancer. Hum Mol Genet 2012;21(14):3112–27.
34. Mishra S., Deng J. J., Gowda P.S. et al. Androgen receptor and microRNA-21 axis downregulates transforming growth factor beta receptor II(TGFBR2) expression in prostate cancer. Oncogene 2014;33(31):4097–106.
35. Dart D.A., Brooke G.N., SitaLumsden A. et al. Reducing prohibitin increases histone acetylation, and promotes androgen independence in prostate tumours by increasing androgen receptor activation by adrenal androgens. Oncogene 2012;31(43):4588–98.
36. Brase J.C., Johannes M., Schlomm T. et al. Circulating miRNAs are correlated with tumor progression in prostate cancer. Int J Cancer 2011;128(3):608–16.
37. Zhang H.L., Qin X. J., Cao D.L. et al. An elevated serum miR-141 level in patients with bone-metastatic prostate cancer is correlated with more bone lesions. Asian J Androl 2013;15(2):231–5.
38. Rana S., Malinowska K., Zoller M. Exosomal tumor microRNA modulates premetastatic organ cells. Neoplasia 2013;15(3):281–95.
39. Valadi H., Ekstrom K., Bossios A. et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 2007;9(6):654–9.
40. Mo W., Zhang J., Li X. et al. Identification of novel AR-targeted microRNAs mediating androgen signalling through critical pathways to regulate cell viability in prostate cancer. PloS One 2013;8(2):e56592.
41. Daniels G., Jha R., Shen Y. et al. Androgen receptor coactivators that inhibit prostate cancer growth. Am J Clin Exper Urol 2014;2(1):62–70.
42. Clark E.L., Coulson A., Dalgliesh C. et al. The RNA helicase p68 is a novel androgen receptor coactivator involved in splicing and is overexpressed in prostate cancer. Cancer Res 2008;68(19):7938–46.
43. Leivonen S.K., Makela R., Ostling P. et al. Protein lysate microarray analysis to identify microRNAs regulating estrogen receptor signaling in breast cancer cell lines. Oncogene 2009;28(44):3926–36.
44. Ostling P., Leivonen S.K., Aakula A. et al. Systematic analysis of microRNAs targeting the androgen receptor in prostate cancer cells. Cancer Res 2011;71(5):1956–67.
45. Mertens-Talcott S.U., Chintharlapalli S., Li X. et al. The oncogenic microRNA-27a targets genes that regulate specificity protein transcription factors and the G2-M checkpoint in MDA-MB-231 breast cancer cells. Cancer Res 2007;67(22):11001–11.
46. Li X., Mertens-Talcott S.U., Zhang S. et al. MicroRNA-27a indirectly regulates estrogen receptor {alpha} expression and hormone responsiveness in MCF-7 breast cancer cells. Endocrinology 2010;151(6):2462–73.
47. Zhao Y., Deng C., Wang J. et al. Let-7 family miRNAs regulate estrogen receptor alpha signaling in estrogen receptor positive breast cancer. Breast Cancer Res Treat 2011;127(1):69–80.
48. Pandey D.P., Picard D. miR-22 inhibits estrogen signaling by directly targeting the estrogen receptor alpha mRNA. Mol Cell Biol 2009;29(13):3783–90.
49. Spizzo R., Nicoloso M.S., Lupini L. et al. miR-145 participates with TP53 in a death-promoting regulatory loop and targets estrogen receptor-alpha in human breast cancer cells. Cell Death Differ 2010;17(2):246–54.
50. Iorio M.V., Ferracin M., Liu C.G. et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res 2005;65(16):7065–70.
51. Kondo N., Toyama T., Sugiura H. et al. miR-206 expression is down-regulated in estrogen receptor alpha-positive human breast cancer. Cancer Res 2008;68(13):5004–8.
52. Zhao J. J., Lin J., Yang H. et al. MicroRNA-221/222 negatively regulates estrogen receptor alpha and is associated with tamoxifen resistance in breast cancer. J Biol Chem 2008;283(45):31079–86.
53. Di Leva G., Gasparini P., Piovan C. et al. MicroRNA cluster 221-222 and estrogen receptor alpha interactions in breast cancer. J Natl Cancer Inst 2010;102(10):706–21.
54. Nadiminty N., Tummala R., Lou W. et al. MicroRNA let-7c suppresses androgen receptor expression and activity via regulation of Myc expression in prostate cancer cells. J Biol Chem 2012;287(2):1527–37.
55. Kashat M., Azzouz L., Sarkar S.H. et al. Inactivation of AR and Notch-1 signaling by miR- 34a attenuates prostate cancer aggressiveness. Am J Transl Res 2012;4(4):432–42.
56. Gong A.Y., Eischeid A.N., Xiao J. et al. miR-17-5p targets the p300/CBP-associated factor and modulates androgen receptor transcriptional activity in cultured prostate cancer cells. BMC Cancer 2012;12:492.
57. Shi X.B., Xue L., Ma A.H. et al. Tumor suppressive miR-124 targets androgen receptor and inhibits proliferation of prostate cancer cells. Oncogene 2013;32(35):4130–8.
58. Qu F., Cui X., Hong Y. et al. MicroRNA-185 suppresses proliferation, invasion, migration, and tumorigenicity of human prostate cancer cells through targeting androgen receptor. Mol Cell Biochem 2013;377(1–2):121–30.
59. Hagman Z., Haflidadottir B.S., Ceder J.A. et al. miR-205 negatively regulates the androgen receptor and is associated with adverse outcome of prostate cancer patients. Br J Cancer 2013;108(8):1668–76.
60. Epis M.R., Giles K.M., Barker A. et al. miR-331-3p regulates ERBB-2 expression and androgen receptor signaling in prostate cancer. J Biol Chem 2009;284(37):24696–704.
61. Sikand K., Slaibi J.E., Singh R. et al. miR 488* inhibits androgen receptor expression in prostate carcinoma cells. Int J Cancer 2011;129(4):810–9.
62. Lanz R.B., Razani B., Goldberg A.D. et al. Distinct RNA motifs are important for coactivation of steroid hormone receptors by steroid receptor RNA activator (SRA). Proc Natl Acad Sci USA 2002;99(25):16081–6.
63. Hube F., Guo J., Chooniedass-Kothari S. et al. Alternative splicing of the first intron of the steroid receptor RNA activator (SRA) participates in the generation of coding and noncoding RNA isoforms in breast cancer cell lines. DNA Cell Biol 2006;25(7):418–28.
64. Redfern A.D., Colley S.M., Beveridge D. J. et al. RNA-induced silencing complex (RISC) Proteins PACT, TRBP, and Dicer are SRA binding nuclear receptor coregulators. Proc Natl Acad Sci USA 2013;110(16):6536–41.
65. Garcia-Becerra R., Santos N., Diaz L. et al. Mechanisms of resistance to endocrine therapy in breast cancer: focus on signaling pathways, miRNAs and genetically based resistance. Int J Mol Sci 2012;14(1):108–45.
66. Ward A., Shukla K., Balwierz A. et al. MicroRNA-519a is a novel oncomir conferring tamoxifen resistance by targeting a network of tumour-suppressor genes in ER+ breast cancer. J Pathol 2014;233(4):368–79.
67. Li F., Mahato R.I. MicroRNAs and drug resistance in prostate cancers. Molecular pharmaceutics 2014;11(8):2539–52.
68. Ottman R., Nguyen C., Lorch R., Chakrabarti R. MicroRNA expressions associated with progression of prostate cancer cells to antiandrogen therapy resistance. Mol Cancer 2014;13:1.
69. Di Leva G., Piovan C., Gasparini P. et al. Estrogen mediated-activation of miR-191/425 cluster modulates tumorigenicity of breast cancer cells depending on estrogen receptor status. PLoS Genet 2013;9(3):e1003311.
70. Zhao Y., Deng C., Lu W. et al. let-7 microRNAs induce tamoxifen sensitivity by downregulation of estrogen receptor alpha signaling in breast cancer. Mol Med 2011;17(11–12):1233–41.
71. Gan R., Yang Y., Yang X. et al. Downregulation of miR-221/222 enhances sensitivity of breast cancer cells to tamoxifen through upregulation of TIMP3. Cancer Gene Ther 2014;21(7):290–6.
72. Tuomarila M., Luostari K., Soini Y. et al. Overexpression of microRNA-200c predicts poor outcome in patients with PR-negative breast cancer. PloS One 2014;9(10):e109508.
73. Dijkstra S., Birker I.L., Smit F.P. et al. Prostate cancer biomarker profiles in urinary sediments and exosomes. J Urol 2014;191(4):1132–8.
74. Малек А.М., Берштейн Л.М., Филатов М.В. и др. Система экзосомальных межклеточных коммуникаций и ее роль в процессе метастатической диссеминации. Вопросы онкологии 2014;60(4):429–36. [Malek A.M., Berstein L.M., Filatov M.V. et al. System of exosomal intercellular communications and its role in metastatic dissemination process. Voprosy onkologii = Oncology Issues 2014;60(4): 429–36. (In Russ.)].
75. Blandino G., Valerio M., Cioce M. et al. Metformin elicits anticancer effects through the sequential modulation of DICER and c-MYC. Nature Commun 2012;3:865.
76. Avci C.B., Harman E., Dodurga Y. et al. Therapeutic potential of an anti-diabetic drug, metformin: alteration of miRNA expression in prostate cancer cells. Asian Pac J Cancer Prev 2013;14(2):765–8.
Review
For citations:
Malek A.V., Bershtein L.M. MicroRNA: sex steroids, hormonal carcinogenesis, hormonal sensitivity of tumor tissue. Advances in Molecular Oncology. 2015;2(1):004-012. (In Russ.) https://doi.org/10.17650/2313-805X.2015.2.1.004-012