Preview

Advances in Molecular Oncology

Advanced search

The role of Ikaros transcriptional factor in normal hematopoiesis and leukemogenesis: biological and clinical aspects

https://doi.org/10.17650/2313-805X.2015.2.1.013-026

Abstract

Investigation of the pathogenesis and factors effecting recurrence, progression and drug resistance in acute leukemia (AL) remains a major challenge for hematology and other related areas. The role of more than 50 genes and proteins in the AL pathogenesis has been shown, including the well-studied tumor suppressor (CDKN2A/CDKN2B, RB1, PTEN, p53), and classical fusion genes (BCR/ABL1, TEL/AML1, E2A/PBX, MLL translocations). In addition, high frequency of aberrations in genes responsible for lymphoid differentiation have been identified such as transcription factors (PAX5, IKZF1 and EBF1), transcriptional regulation of the genes (ETV6, ERG), and signaling pathways of antigen receptors (BTLA, CD200, TOX, BLNK, VPREB1), as well as genes involved in chemoresistance of leukemia cells (NR3C1). In recent studies, Ikaros abnormalities have been reported to be frequently associated with AL. Ikaros is a member of a Kruppel-like family of zinc finger transcription factors that also includes IKZF2 (Helios), IKZF3 (Aiolos), Eos and Pegasus, and encoded by the IKZF1 gene. In hematopoietic cells Ikaros functions as a transcription factor, a key protein controlling T-, B-, NK-, and dendritic cells early differentiation. At the early hematopoiesis stages, it represses the myeloid and erythroid lineages, and stimulates the lymphoid differentiation. Ikaros also normally modulates immune response and plays role of a tumor suppressor in lymphoid malignances. Data from numerous clinical studies confirmed an association between the presence of IKZF1 aberrations and B-cell and, to a lesser extent, T-cell acute lymphoblastic leukemia (ALL) development. Besides, loss of Ikaros function was associated with progression of myeloproliferative diseases to acute myeloid leukemia (AML) in children. From clinical point of view, particular intragenic IKZF1 deletions and a short (non-functional) protein Ikaros isoforms, which may occur as a result of intragenic deletions or aberrant splicing, are the most significant features. These mutations of IKZF1 gene and Ikaros aberrant expression play a key role in the lymphoid transformation, tumor progression, and may cause development of leukemic cells chemoresistance. Therefore, IKZF1 aberrations should be taken into account as a valuable prognostic marker for risk groups stratification, poor outcome and low survival rare. This review compiles currently available data regarding the frequency and variants of the IKZF1 (Ikaros) aberrations, and the use of them in diagnostics of all types of leukemia and minimal residual disease detection. Although Ikaros has already applied in clinical studies, a growing number of questions  still remain unanswered. Molecular biology of IKZF1 expression and splicing regulation is not well understood. Clinical value of point mutations and subclonal deletion in IKZF1 locus should be elucidated. Prognostic significance of intragenic deletions and aberrant splicing is necessary to clarify for different groups of ALL patients, in connection with other genetic markers and therapy protocol. More detailed clinical analysis required for proving IKZF1 impact on probability of relapse, improving patients, risk stratification and application of minimal residual disease.

About the Authors

V. S. Vshivkoo
Republican Research Center for Pediatric Oncology, Hematology and Immunology, Ministry of Health of Belarus
Russian Federation
43 Frunzenskaya St., v. Borovlyany, Minsk region, 223053, Belarus


A. N. Meleshko
Republican Research Center for Pediatric Oncology, Hematology and Immunology, Ministry of Health of Belarus
Russian Federation
43 Frunzenskaya St., v. Borovlyany, Minsk region, 223053, Belarus


References

1. OriGene Technologies database. URL: http://www.origene.com / Human_cDNA / SC331775. aspx.

2. Gounari F., Kee B. L. Fingerprinting Ikaros. Nat Immunol 2013;14(10):1034–5.

3. Jhanjun L., Perez-Casellas L. A., Savic A. et al. Ikaros isoforms the saga continues. World J Biol Chem 2011;2(6):140–5.

4. Molnár A., Georgopoulos K. The Ikaros gene encodes a family of functionally diverse zinc finger DNA-binding proteins. Mol Cell Biol 1994;14(12):8292–303.

5. Payne K. J., Nicolas J. H., Zhu J. Y. et al.Cutting edge: predominant expression of a novel Ikaros isoform in normal human hemopoiesis. J Immunol 2001;167(4): 1867–70.

6. Meleshko A. N., Movchan L. V., Belevtsev M. V., Savitskaja T. V. Relative expression of different Ikaros isoforms in childhood acute leukemia. Blood Cells Mol Dis 2008;41(3):278–83.

7. Georgopoulos K. Haematopoietic cell-fate decisions, chromatin regulation and ikaros. Nat Rev Immunol 2002;2(3):162–74.

8. Cortes M., Wong E., Koipally J., Georgopoulos K. Control of lymphocyte development by the Ikaros gene family. Curr Opin Immunol 1999;11(2):167–71.

9. Liu M., Whetstine J. R., Payton S. G. et al. Roles of USF, Ikaros and Sp proteins in the transcriptional regulation of the human reduced folate carrier B promoter. Biochem J 2004;383(Pt 2):249–57.

10. Zinc finger proteins: From atomic contact to cellular function. S. Iuchi, N. Kuldel (eds.). Landes Bioscience, 2005. P. 201.

11. Song C., Li Z., Erbe A. K. et al. Regulation of Ikaros function by casein kinase 2 and protein phosphatase 1. World J Biol Chem 2011;2(6):126–31.

12. Francis O. L., Payne J. L., Su R. J., Payne K. J. Regulator of myeloid differentiation and function: The secret life of Ikaros. World J Biol Chem 2011;2(6):119–25.

13. Schwickert T. A., Tagoh H., Gültekin S. et al. Stage-specific control of early B cell development by the transcription factor Ikaros. Nat Immunol 2014;15(3):283–93.

14. Georgopoulos K., Moore D. D., Derfler B. Ikaros, an early lymphoid-specific transcription factor and a putative mediator for T cell commitment. Science 1992;258(5083):808–12.

15. Georgopoulos K., Bigby M., Wang J. H. et al. The Ikaros gene is required for the development of all lymphoid lineages. Cell 1994;79(1):143–56.

16. Winandy S., Wu P., Georgopoulos K. A dominant mutation in the Ikaros gene leads to rapid development of leukemia and lymphoma. Cell 1995;83(2):289–99.

17. Wang J. H., Nichogiannopoulou A., Wu L. et al. Selective defects in the development of the fetal and adult lymphoid system in mice with an Ikaros null mutation. Immunity 1996;5(6):537–49.

18. Ярилин А. А. Иммунология. М.: ГЭОТАР-Медиа, 2010. 752 c. [Yarilin A. A. Immunology. Moscow: GEOTAR-Media, 2010. 752 p. (In Russ.)].

19. Sellars M., Kastner P., Chan S. Ikaros in B cell development and function. World J Biol Chem 2011;2(6):132–39.

20. Yoshida T., Georgopoulos K. Ikaros fingers on lymphocyte differentiation. Int J Hematol 2014;100(3):220–9.

21. Osborne B. A. Transcriptional control of T cell development. Curr Opin Immunol 2000;12(3):301–6.

22. Rothenberg E. V., Taghon T. Molecular genetics of T cell development. Annu Rev Immunol 2005;23:601–49.

23. Winandy S. Ikaros to the rescue of TCR-α chain gene rearrangement. Eur J Immunol 2013;43(2):314–7.

24. Schmitt C., Tonnelle C., Dalloul A. et al. Aiolos and Ikaros: regulators of lymphocyte development, homeostasis and lymphoproliferation. Apoptosis 2002;7(3):277–84.

25. Avitahl N., Winandy S., Friedrich C. et al. Ikaros sets thresholds for T cell activation and regulates chromosome propagation. Immunity 1999;10(3):333–43.

26. Tinsley K. W., Hong C., Luckey M. A. et al. Ikaros is required to survive positive selection and to maintain clonal diversity during T-cell development in the thymus. Blood 2013;122(14):2358–68.

27. Yoshida T., Ng S. Y., Zuniga-Pflucker J. C., Georgopoulos K. Early hematopoietic lineage restrictions directed by Ikaros. Nat Immunol 2006;7(4):382–91.

28. Ng S. Y., Yoshida T., Zhang J., Georgopoulos K. Genome-wide lineagespecific transcriptional networks underscore Ikaros-dependent lymphoid priming in hematopoietic stem cells. Immunity 2009;30(4):493‑507.

29. Nutt S. L., Kee B. L. The transcriptional regulation of B cell lineage commitment. Immunity 2007;26(6):715–25.

30. Smith E., Sigvardsson M. The roles of transcription factors in B lymphocyte commitment, development, and transformation. J Leukoc Biol 2004;75(6):973–81.

31. Ng S. Y., Yoshida T., Georgopoulos K. Ikaros and chromatin regulation in early hematopoiesis. Curr Opin Immunol 2007;19(2):116–22.

32. Kirstetter P., Thomas M., Dierich A. et al. Ikaros is critical for B cell differentiation and function. Eur J Immunol 2002;32(3):720–30.

33. Liberg D., Smale S. T., Merkenschlager M. Upstream of Ikaros. Trends Immunol 2003;24(11):567–70.

34. Jäger R., Gisslinger H., Passamonti F. et al. Deletions of the transcription factor Ikaros in myeloproliferative neoplasms. Leukemia 2010;24(7):1290–8.

35. Tefferi A. Novel mutations and their functional and clinical relevance in myeloproliferative neoplasms: JAK2, MPL, TET2, ASXL1, CBL, IDH and IKZF1. Leukemia 2010;24(60):1128–38.

36. Yagi T., Hibi S., Takanashi M. et al. High frequency of Ikaros isoform 6 expression in acute myelomonocytic and monocytic leukemias: implications for up-regulation of the antiapoptotic protein Bcl-XL in leukemogenesis. Blood 2002;99(4):1350–5.

37. Meyer C., Zur Stadt U., Escherich G. et al. Refinement of IKZF1 recombination hotspots in pediatric BCP-ALL patients. Am J Blood Res 2013;3(2):165–73.

38. Klein F., Feldhahn N., Herzog S. et al. BCR-ABL1 induces aberrant splicing of IKAROS and lineage infidelity in pre-B lymphoblastic leukemia cells. Oncogene 2006;25(7):1118–24.

39. Mullighan C. G., Miller C. B., Radtke I. BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature 2008;453(7191):110–4.

40. Yuan T., Zhao X. L., Zhang L. X. et al. Expression and clinical significance of IKZF1 gene IK6 isoform in adult acute lymphoblastic leukemia. J Exp Hematol 2013;21(3):539–43.

41. Burmeister T., Gesine B., Gröger D. Germline variants in IKZF1, ARID5B, and CEBPE as risk factors for adult-onset acute lymphoblastic leukemia: an analysis from the GMALL study group. Haematologica 2014;99(2):e23–5.

42. Mullighan C. G. The molecular genetic makeup of acute lymphoblastic leukemia. Hematology Am Soc Hematol Educ Program 2012;2012:389–96. doi: 10.1182 / asheducation-2012.1.389.

43. Mullighan C. G., Goorha S., Radtke I. et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 2007;446(7137):758–64.

44. Kawamata N., Ogawa S., Zimmermann M. et al. Molecular allelokaryotyping of pediatric acute lymphoblastic leukemias by high-resolution single nucleotide polymorphism oligonucleotide genomic microarray. Blood 2008;111(2):776–84.

45. Paulsson K., Cazier J. B., Macdougall F. Microdeletions are a general feature of adult and adolescent acute lymphoblastic leukemia: Unexpected similarities with pediatric disease. Proc Natl Acad Sci USA 2008;105(18):6708–13.

46. Martinelli G., Iacobucci I., Storlazzi C. T. et al. IKZF1(Ikaros) deletions in BCRABL1‑positive acute lymphoblastic leukemia are associated with short diseasefree survival and high rate of cumulative incidence of relapse: a GIMEMA AL WP report. J Clin Oncol 2009;27(31):5202–7.

47. Mullighan C. G., Su X., Zhang J. et al. Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N Engl J Med 2009;360(5):470–80.

48. Den Boer M. L., van Slegtenhorst M., de Menezes R. X. et al. A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study. Lancet Oncol 2009;10(2):125–34.

49. Okamoto R., Ogawa S., Nowak D. et al. Genomic profiling of adult acute lymphoblastic leukemia by single nucleotide polymorphism oligonucleotide microarray and comparison to pediatric acute lymphoblastic leukemia. Haematologica 2010;95(9):1481–8.

50. Iacobucci I., Iraci N., Messina M. et al. IKAROS deletions dictate a unique gene expression signature in patients with adult B-cell acute lymphoblastic leukemia. PLoS One 2012;7(7):e40934.

51. Caye A., Beldjord K., Mass-Malo K. et al. Breakpoint-specific multiplex polymerase chain reaction allows the detection of IKZF1 intragenic deletions and minimal residual disease monitoring in B-cell precursor acute lymphoblastic leukemia. Haematologica 2013;98(4): 597–601.

52. Tokunaga K., Yamaguchi S., Iwanaga E. et al. High frequency of IKZF1 genetic alterations in adult patients with B-cell acute lymphoblastic leukemia. Eur J Haematol 2013;91(3):201–8.

53. de Rooij J., Beuling E., Zwaan C. M. et al. IKZF1 deletions in pediatric acute myeloid leukemia. 56th ASH Annual Meeting & Exposition. URL: https://ash.confex.com / as h / 2014 / webprogram / Paper71902. html.

54. Kastner P., Chan S. Role of Ikaros in T-cell acute lymphoblastic leukemia. World J Biol Chem 2011;2(6):108–14.

55. Iacobucci I., Storlazzi C. T., Cilloni D. Identification and molecular characterization of recurrent genomic deletions on 7p12 in the IKZF1 gene in a large cohort of BCR-ABL1‑positive acute lymphoblastic leukemia patients: on behalf of Gruppo Italiano Malattie Ematologiche dell»Adulto Acute Leukemia Working Party(GIMEMA AL WP). Blood 2009;114(10):2159–67.

56. Roberts K. G., Morin R. D., Zhang J. et al. Genetic alterations activating kinase and cytokine receptor signaling in highrisk acute lymphoblastic leukemia. Cancer Cell 2012;22(2):153–66.

57. Boehm V., Lebenatus A., Bartels M. et al. Subclonal IKZF1 deletions indicate a multiclonal evolution in BCRABL1‑positive B-cell precursor ALL. Blood 2013;122(21):1327.

58. Kuiper R. P., Waanders E., van der Velden V. H. et al. IKZF1 deletions predict relapse in uniformly treated pediatric precursor B-ALL. Leukemia 2010;24(7):1258–64.

59. Liu P., Lin Z., Qian S. et al. Expression of dominant-negative Ikaros isoforms and associated genetic alterations in Chinese adult patients with leukemia Ann Hematol 2012;91(7):1039–49.

60. Mi J. Q., Wang X., Yao Y. et al. Newly diagnosed acute lymphoblastic leukemia in China(II): prognosis related to genetic abnormalities in a series of 1091 cases. Leukemia 2012;26(7):1507–16.

61. Palmi C., Valsecchi M. G., Longinotti G. et al. What is the relevance of Ikaros gene deletions as a prognostic marker in pediatric philadelphia-negative B-cell precursor acute lymphoblastic leukemia? Haematologica 2013;98(8):1226–31.

62. Waanders E., van der Velden V. H., van der Schoot C. E. et al. Integrated use of minimal residual disease classification and IKZF1 alteration status accurately predicts 79 % of relapses in pediatric acute lymphoblastic leukemia. Leukemia 2011;25(2):254–8.

63. Krentz S., Hof J., Mendioroz A. et al. Prognostic value of genetic alterations in children with first bone marrow relapse precursor acute lymphoblastic leukemia. Leukemia 2013;27(2):295–304.

64. Martinelli G., Iacobucci I., Papayannidis C., Soverini S. New targets for Ph+ leukaemia therapy. Best Pract Res Clin Haematol 2009;22(3):445–54.

65. Iacobucci I., Lonetti A., Messa F. et al. Expression of spliced oncogenic Ikaros isoforms in Philadelphia-positive acute lymphoblastic leukemia patients treated with tyrosine kinase inhibitors: implications for a new mechanism of resistance. Blood 2008;112(9):3847–55.

66. Zhou F., Xu Y., Qiu Y. et al. Ik6 expression provides a new strategy for the therapy of acute lymphoblastic leukemia. Oncol Rep 2014;31(3):1373–9.

67. Vitanza N. A., Zaky W., Blum R. et al. Ikaros deletions in BCR-ABL-negative childhood acute lymphoblastic leukemia are associated with a distinct gene expression signature but do not result in intrinsic chemoresistance. Pediatr Blood Cancer 2014; 61(10):1779–85.


Review

For citations:


Vshivkoo V.S., Meleshko A.N. The role of Ikaros transcriptional factor in normal hematopoiesis and leukemogenesis: biological and clinical aspects. Advances in Molecular Oncology. 2015;2(1):013-026. (In Russ.) https://doi.org/10.17650/2313-805X.2015.2.1.013-026

Views: 1630


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2313-805X (Print)
ISSN 2413-3787 (Online)