Preview

Успехи молекулярной онкологии

Расширенный поиск

Асцит как микроокружение опухоли при раке яичников: взаимосвязь прогноза и химиорезистентности

https://doi.org/10.17650/2313-805X-2019-6-2-8-20

Полный текст:

Аннотация

Выраженная гетерогенность карцином яичника на молекулярно-генетическом уровне сопряжена с отсутствием специфических маркеров химиорезистентности. При этом асцит является привлекательной биологической жидкостью для обнаружения биомаркеров, поскольку она легкодоступна для получения. Данный обзор посвящен последним достижениям в изучении особенностей компонентов асцитической жидкости в аспекте их взаимосвязи с химиорезистентностью. Представлены собственные данные, касающиеся содержания параметров системы IFR (свободных IGFs, а также IGFBP-3, IGFBP-4 и PAPP-A) в асцитической жидкости и опухолевой ткани при диссеминированном раке яичников, которые свидетельствуют о значимости их изучения. Показано, что уровень белков системы IGF существенно зависит от объема асцитической жидкости. Изучение особенностей асцитической жидкости при раке яичников напрямую связано с перспективой появления новых возможностей для терапии диссеминированного рака яичников.

Об авторах

А. Б. Виллерт
НИИ онкологии ФГБНУ «Томский национальный исследовательский медицинский центр РАН»
Россия
634009 Томск, Кооперативный переулок, 5


Л. А. Коломиец
НИИ онкологии ФГБНУ «Томский национальный исследовательский медицинский центр РАН»; ФГБОУ ВО «Сибирский государственный медицинский университет» Минздрава России
Россия
634009 Томск, Кооперативный переулок, 5; 634050 Томск, Московский тракт, 2


Н. В. Юнусова
НИИ онкологии ФГБНУ «Томский национальный исследовательский медицинский центр РАН»; ФГБОУ ВО «Сибирский государственный медицинский университет» Минздрава России
Россия
634009 Томск, Кооперативный переулок, 5; 634050 Томск, Московский тракт, 2


Список литературы

1. Tan D.S., Agarwal R., Kaye S.B. Mechanisms of transcoelomic metastasis in ovarian cancer. Lancet Oncol 2006;7(11):925–34. DOI: 10.1016/S1470-2045(06)70939-1.

2. Ahmed N., Stenvers K.L. Getting to know ovarian cancer ascites: opportunities for targeted therapy-based translational research. Front Oncol 2013;3:256. DOI: 10.3389/fonc.2013.00256.

3. Guo L., Guo N. Exosomes: potent regulators of tumor malignancy and potential bio-tools in clinical application. Crit Rev Oncol Hematol 2015;95(3):346–58. DOI: 10.1016/j.critrevonc.2015.04.002.

4. Matte I., Lane D., Laplante C. et al. Profiling of cytokines in human epithelial ovarian cancer ascites. Am J Cancer Res 2012;2(5):566–80.

5. Lane D., Matte I., Rancourt C., Piché A. Prognostic significance of IL-6 and IL-8 ascites levels in ovarian cancer patients. BMC Cancer 2011;11:210. DOI: 10.1186/1471-2407-11-210.

6. Yigit R., Figdor C.G., Zusterzeel P.L. et al. Cytokine analysis as a tool to understand tumour – host interaction in ovarian cancer. Eur J Cancer 2011;47:1883–9. DOI: 10.1016/j.ejca.2011.03.026.

7. Giuntoli R.L., Webb T.J., Zoso A. et al. Ovarian cancer-associated ascites demonstrates altered immune environment: implications for antitumor immunity. Anticancer Res 2009;29(8):2875–84.

8. Lane D., Matte I., Garde-Granger P. et al. Inflammation-regulating factors in ascites as predictive biomarkers of drug resistance and progression-free survival in serous epithelial ovarian cancers. BMC Cancer 2015;15:492. DOI: 10.1186/s12885-015-1511-7

9. Kolomeyevskaya N., Eng K.H., Khan A.N. et al. Cytokine profiling of ascites at primary surgery identifies an interaction of tumor necrosis factor-α and interleukin-6 in predicting reduced progression-free survival in epithelial ovarian cancer. Gynecol Oncol 2015;138(2):352–7. DOI: 10.1016/j.ygyno.2015.05.009.

10. Huang H., Li Y., Liu J. et al. Screening and identification of biomarkers in ascites related to intrinsic chemoresistance of serous epithelial ovarian cancers. PLoS One 2012;7(12):e51256. DOI: 10.1371/journal.pone.0051256.

11. McMillan A., Rulisa S., Sumarah M. et al. A multi-platform metabolomics approach identifies highly specific biomarkers of bacte rial diversity in the vagina of pregnant and non-pregnant women. Sci Rep 2015;5:14174. DOI: 10.1038/srep14174.

12. Finley L.W., Carracedo A., Lee J. et al. SIRT3 opposes reprogramming of cancer cell metabolism through HIF1α destabilization. Cancer Cell 2011;19(3):416–28. DOI: 10.1016/j.ccr.2011.02.014.

13. Chung H.H., Kwon H.W., Kang K.W. et al. Preoperative [F]FDG PET/CT predicts recurrence in patients with epithelial ovarian cancer. J Gynecol Oncol 2012;23(1):28–34. DOI: 10.3802/jgo.2012.23.1.28.

14. Gwak H., Haegeman G., Tsang B.K., Song Y.S. Cancer-specific interruption of glucose metabolism by resveratrol is mediated through inhibition of Akt/ GLUT1 axis in ovarian cancer cells. Mol Carcinog 2015;54(12):1529–40. DOI: 10.1002/mc.22227.

15. Carvalho K.C., Cunha I.W., Rocha R.M. et al. GLUT1 expression in malignant tumors and its use as an immunodiagnostic marker. Clinics (Sao Paulo) 2011;66(6):965–72. DOI: 10.1590/s1807-59322011000600008.

16. Suh D.H., Kim M.A., Kim H. et al. Association of overexpression of hexokinase II with chemoresistance in epithelial ovarian cancer. Clin Exp Med 2014;14:345–53. DOI: 10.1007/s10238-013-0250-9.

17. Eikawa S., Nishida M., Mizukami S. et al. Immune-mediated antitumor effect by type 2 diabetes drug, metformin. Proc Natl Acad Sci USA 2015;112(6):1809–14. DOI: 10.1073/pnas.1417636112.

18. Buckanovich R.J., Brown J., Shank J. et al. A phase II clinical trial of metformin as a cancer stem cell targeting agent in stage IIc/III/IV ovarian, fallopian tube, and primary peritoneal cancer. J Clin Oncology 2017;35(Suppl 15):5556. DOI: 10.1200/JCO.2017.35.15_suppl.5556.

19. Chae Y.K., Arya A., Malecek M.K. et al. Repurposing metformin for cancer treatment: current clinical studies. Oncotarget 2016;7(26):40767–80. DOI: 10.18632/oncotarget.8194.

20. Shender V.O., Pavlyukov M.S., Ziganshin R.H. et al. Proteomemetabolome profiling of ovarian cancer ascites reveals novel components involved in intercellular communication. Mol Cell Proteomics 2014;13(12):3558–71. DOI: 10.1074/mcp.M114.041194.

21. Hartmann D., Lucks J., Fuchs S. et al. Long chain ceramides and very long chain ceramides have opposite effects on human breast and colon cancer cell growth. Int J Biochem Cell Biol 2012;44(4):620–8. DOI: 10.1016/j.biocel.2011.12.019.

22. Trachana S.P., Pilalis E., Gavalas N.G. et al. The development of an angiogenic protein “signature” in ovarian cancer ascites as a tool for biologic and prognostic profiling. PLoS One 2016;11(6):e0156403. DOI: 10.1371/journal.pone.0156403.

23. Герштейн Е.С., Исаева Э.Р., Огнерубов Н.А. Компоненты системы инсулиноподобных факторов роста как факторы прогноза и мишени молекулярно- направленной терапии рака яичников. Вестник Тамбовского университета 2014;19(1):42–5.

24. Firth S.M., Baxter R.C. Cellular actions of the insulin-like growth factor binding proteins. Endocr Rev 2002;23:824–54. DOI: 10.1210/er.2001-0033. 2

25. Lane D., Matte I., Garde-Granger P. et al. Ascites IL-10 promotes ovarian cancer cell migration. Cancer Microenviron 2018;11(2, 3):115–24. DOI: 10.1007/s12307-018-0215-3.

26. Lamichhane P., Karyampudi L., Shreeder B. et al. IL-10 release upon PD-1 blockade sustains immunosuppression in ovarian cancer. Cancer Res 2017;77(23):6667–78. DOI: 10.1158/0008-5472.CAN-17-0740.

27. Dalal V., Kumar R., Kumar S. et al. Biomarker potential of IL-6 and VEGF-A in ascitic fluid of epithelial ovarian cancer patients. Clin Chim Acta 2018;482:27–32. DOI: 10.1016/j.cca.2018.03.019.

28. Cantón-Romero J.C., MirandaDíaz A.G., Bañuelos-Ramírez J.L. et al. Markers of oxidative stress and inflammation in ascites and plasma in patients with platinum-sensitive, platinum-resistant, and platinumrefractory epithelial ovarian cancer. Oxid Med Cell Longev 2017;2017:2873030. DOI: 10.1155/2017/2873030.

29. Kim S., Gwak H., Kim H.S. et al. Malignant ascites enhances migratory and invasive properties of ovarian cancer cells with membrane bound IL-6R in vitro. Oncotarget 2016;7(50):83148–59. DOI: 10.18632/oncotarget.13074.

30. Brencicova E., Jagger A.L., Evans H.G. et al. Interleukin-10 and prostaglandin E2 have complementary but distinct suppressive effects on Toll-like receptormediated dendritic cell activation in ovarian carcinoma. PLoS One 2017;12(4):e0175712. DOI: 10.1371/journal.pone.0175712.

31. Wang X., Zhu Q., Lin Y. et al. Crosstalk between TEMs and endothelial cells modulates angiogenesis and metastasis via IGF1-IGF1R signalling in epithelial ovarian cancer. Br J Cancer 2017;117(9):1371–82. DOI: 10.1038/bjc.2017.297.

32. Tuppurainen L., Sallinen H., Karvonen A. et al. Combined gene therapy using AdsVEGFR2 and AdsTie2 with chemotherapy reduces the growth of human ovarian cancer and formation of ascites in mice. Int J Gynecol Cancer 2017;27(5):879–86. DOI: 10.1097/IGC.0000000000000973.

33. Bekes I., Friedl T.W., Köhler T. et al. Does VEGF facilitate local tumor growth and spread into the abdominal cavity by suppressing endothelial cell adhesion, thus increasing vascular peritoneal permeability followed by ascitesproduction in ovarian cancer? Mol Cancer 2016;15:13. DOI: 10.1186/s12943-016-0497-3.

34. Zhan N., Dong W.G., Wang J. The clinical significance of vascular endothelial growth factor in malignant ascites. Tumour Biol 2016;37(3):3719–25. DOI: 10.1007/s13277-015-4198-0.

35. Zhao H., Li X., Chen D. et al. Intraperitoneal administration of cisplatin plus bevacizumab for the management of malignant ascites in ovarian epithelial cancer: results of a phase III clinical trial. Med Oncol 2015;32(2):292. DOI: 10.1007/s12032-014-0292-1.

36. Gawrychowski K., Szewczyk G., Skopińska-Różewska E. et al. The angiogenic activity of ascites in the course of ovarian cancer as a marker of disease progression. Dis Markers 2014;2014(683757). DOI: 10.1155/2014/683757.

37. Decio A., Taraboletti G., Patton V. et al. Vascular endothelial growth factor c promotes ovarian carcinoma progression through paracrine and autocrine mechanisms. Am J Pathol 2014;184(4):1050–61. DOI: 10.1016/j.ajpath.2013.12.030.

38. Chen Y.L., Chou C.Y., Chang M.C. et al. IL17а and IL21 combined with surgical status predict the outcome of ovarian cancer patients. Endocr Relat Cancer 2015;22(5):703–11. DOI: 10.1530/ERC-15-0145.

39. Tang M., Liu B., Bu X., Zhao P. Cross-talk between ovarian cancer cells and macrophages through periostin promotes macrophage recruitment. Cancer Sci 2018;109(5):1309–18. DOI: 10.1111/cas.13567.

40. Yunusova N.V., Villert A.B., Spirina L.V. Insulin-like growth factors and their binding proteins in tumors and ascites of ovarian cancer patients: association with response to neoadjuvant chemotherapy. Asian Pac J Cancer Prev 2016;17(12):5315–20. DOI: 10.22034/APJCP.2016.17.12.5315.

41. Huang C.T., Chang M.C., Chen Y.L. et al. Insulin-like growth factors inhibit dendritic cell-mediated anti-tumor immunity through regulating ERK1/2 phosphorylation and p38 dephosphorylation. Cancer Lett 2015;359(1):117–26. DOI: 10.1016/j.canlet.2015.01.007.

42. Thomsen J., Hjortebjerg R., Espelund U. et al. PAPP-A proteolytic activity enhances IGF bioactivity in ascites from women with ovarian carcinoma. Oncotarget 2015;6(31):32266–78. DOI: 10.18632/oncotarget.5010.

43. Rafehi S., Ramos Valdes Y., Bertrand M. et al. TGFβ signaling regulates epithelialmesenchymal plasticity in ovarian cancer ascites-derived spheroids. Endocr Relat Cancer 2016;23(3):147–59. DOI: 10.1530/ERC-15-0383.

44. Spirina L.V., Bochkareva N.V., Kondakova I.V. et al. Regulation of insulin-like growth NF-kB proteasome system in endometrial cancer. Mol Biol 2012;46(3):407–13. DOI: 10.1134/S0026893312020173.

45. Slipicevic A., Øy G.F., Askildt I.C. et al. Diagnostic and prognostic role of the insulin growth factor pathway members insulin-like growth factor-II and insulinlike growth factor binding protein-3 in serous effusions. Hum Pathol 2009;40(4):527–37. DOI: 10.1016/j.humpath.2008.10.003.

46. Gortzak-Uzan L., Ignatchenko A., Evangelou A.I. et al. A proteome resource of ovarian cancer ascites: integrated proteomic and bioinformatic analyses to identify putative biomarkers. J Proteome Res 2008;7:339–51. DOI: 10.1021/pr0703223.

47. Kikuchi N., Horiuchi A., Osada R. et al. Nuclear expression of S100A4 is associated with aggressive behavior of epithelial ovarian carcinoma: An important autocrine/paracrine factor in tumor progression. Cancer Sci 2006;97(10):1061–9. DOI: 10.1111/j.1349-7006.2006.00295.x.

48. Kluger H.M., Kluger Y., GilmoreHebert M. et al. CDNA microarray analysis of invasive and tumorigenic phenotypes in a breast cancer model. Lab Invest 2004;84(3):320–31. DOI: 10.1038/labinvest.3700044.

49. Haga A. A possibility that AMF will serve as a target molecule for the diagnosis and treatment of a metastatic neoplasm. Yakugaku Zasshi 2005;25(2):169–75. DOI: https://doi.org/10.1248/ yakushi.125.169.

50. Elschenbroich S., Ignatchenko V., Clarke B. et al. In-depth proteomics of ovarian cancer ascites: combining shotgun proteomics and selected reaction monitoring mass spectrometry. J Proteome Res 2011;10(5):2286–99. DOI: 10.1021/pr1011087.

51. Valadi H., Ekström K., Bossios A. et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 2007;9(6):654–9. DOI: 10.1038/ncb1596.

52. Taylor D.D., Gercel-Taylor C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol 2008;110(1):13–21. DOI: 10.1016/j.ygyno.2008.04.033.

53. Aktaş I.Y., Buğdayci M., Usubütün A. Expression of p16, p53, CD24, EpCAM and calretinin in serous borderline tumors of the ovary. Turk Patoloji Derg 2012;28(3):220–30. DOI: 10.5146/tjpath.2012.01128.

54. Runz S., Keller S., Rupp C. et al. Malignant ascites-derived exosomes of ovarian carcinoma patients contain CD24 and EpCAM. Gynecol Oncol 2007;107(3):563–71. DOI: 10.1016/j.ygyno.2007.08.064.

55. Feigenberg Т., Clarke B., Virtanen C. et al. Molecular profiling and clinical outcome of high-grade serous ovarian cancer presenting with low-versus high-volume ascites. Bio Med Research International 2014;(11):367103. DOI: 10.1155/2014/367103.

56. Keith B., Simon M. Tumor angiogenesis. In: The Molecular Basis of Cancer. 3th Edn. Eds.: J. Mendelsohn, J.W. Gray. Elseiver, 2008. Pp. 241–251.

57. Ferriss J.S., Java J.J., Bookman M.A. et al. Ascites predicts treatment benefit of bevacizumab in front-line therapy of advanced epithelial ovarian, fallopian tube and peritoneal cancers: an NRG Oncology/GOG study. Gynecol Oncol 2015;139:17–22. DOI: 10.1016/j.ygyno.2015.07.103.

58. Gourley C., McCavigan A., Perren T. et al. Molecular subgroup of high-grade serous ovarian cancer (HGSOC) as a predictor of outcome following bevacizumab. J Clin Oncol 2014;32(Suppl.15):5502. DOI: 10.1200/jco.2014.32.15_suppl.5502.

59. Helland Å., Anglesio M.S., George J. et al. Deregulation of MYCN, LIN28B and LET7 in a molecular subtype of aggressive high-grade serous ovarian cancers. PLoS One 2011;6(4):е18064. DOI: 10.1371/journal.pone.0018064.

60. Chen G.M., Kannan L., Geistlinger L. et al. Consensus on molecular subtypes of ovarian cancer. BioRxiv 2017;162685. DOI: 10.1101/162685.

61. Ahmed N., Thompson E.W., Quinn M.A. Epithelial-mesenchymal interconversions in normal ovarian surface epithelium and ovarian carcinomas: an exception to the norm. J Cell Physiol 2007;213(3):581–8. DOI: 10.1002/jcp.21240.


Для цитирования:


Виллерт А.Б., Коломиец Л.А., Юнусова Н.В. Асцит как микроокружение опухоли при раке яичников: взаимосвязь прогноза и химиорезистентности. Успехи молекулярной онкологии. 2019;6(2):8-20. https://doi.org/10.17650/2313-805X-2019-6-2-8-20

For citation:


Villert A.B., Kolomiets L.A., Yunusova N.V. Ascitis as a unique microenvironment of tumors in ovarian cancer: interaction with prognosis and chemoresistance. Advances in molecular oncology. 2019;6(2):8-20. (In Russ.) https://doi.org/10.17650/2313-805X-2019-6-2-8-20

Просмотров: 48


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2313-805X (Print)
ISSN 2413-3787 (Online)