Перспективы таргетной терапии глиом низкой степени злокачественности у детей
https://doi.org/10.17650/2313-805X-2019-6-2-28-41
Аннотация
Об авторах
Э. Ф. ВалиахметоваРоссия
125047 Москва, ул. 4-я Тверская-Ямская, 16
Л. А. Ясько
Россия
117997 Москва, ГСП-7, ул. Саморы Машела, 1
Л. И. Папуша
Россия
117997 Москва, ГСП-7, ул. Саморы Машела, 1
А. Е. Друй
Россия
117997 Москва, ГСП-7, ул. Саморы Машела, 1
А. И. Карачунский
Россия
117997 Москва, ГСП-7, ул. Саморы Машела, 1; 117997 Москва, ул. Островитянова, 1
Список литературы
1. Ostrom Q.T., Gittleman H., Liao P. et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neuro Oncol 2014;16(Suppl 4):iv1–63. DOI: 10.1093/neuonc/nou223.
2. Louis D.N., Perry A., Reifenberger G. et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol 2016;131(6):803–20. DOI: 10.1007/s00401-016-1545-1.
3. Gnekow A.K., Falkenstein F., von Hornstein S. et al. Long-term follow-up of the multicenter, multidisciplinary treatment study HIT-LGG-1996 for lowgrade glioma in children and adolescents of the German Speaking Society of Pediatric Oncology and Hematology. Neuro Oncol 2012;14(10):1265–84. DOI: 10.1093/neuonc/nos202.
4. Robinson K.E., Fraley C.E., Pearson M.M. et al. Neurocognitive late effects of pediatric brain tumors of the posterior fossa: a quantitative review. J Int Neuropsychol Soc 2013;19(1):44–53. DOI: 10.1017/S1355617712000987.
5. Jones D.T.W., Kocialkowski S., Liu L. et al. Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. Cancer Res 2008;68(21):8673–7. DOI: 10.1158/0008-5472.CAN-08-2097.
6. Pfister S., Janzarik W.G., Remke M. et al. BRAF gene duplication constitutes a mechanism of MAPK pathway activation in low-grade astrocytomas. J Clin Invest 2008;118(5):1739–49. DOI: 10.1172/JCI33656DS1.
7. Collins V.P., Jones D.T.W., Giannini C. Pilocytic astrocytoma: pathology, molecular mechanisms and markers. Acta Neuropathol 2015;129(6):775–88. DOI: 10.1007/s00401-015-1410-7.
8. Northcott P.A., Pfister S.M., Jones D.T.W. et al. Next-generation(epi)genetic drivers of childhood brain tumours and the outlook for targeted therapies. Lancet Oncol 2015;16:293–302. DOI: 10.1016/S1470-2045(14)71206-9.
9. Zhang J., Wu G., Miller C.P. et al. Wholegenome sequencing identifies genetic alterations in pediatric low-grade gliomas. Nat Genet 2013;45(6):602–12. DOI: 10.1038/ng.2611.
10. Jacob K., Albrecht S., Sollier C. et al. Duplication of 7q34 is specific to juvenile pilocytic astrocytomas and a hallmark of cerebellar and optic pathway tumours. Br J Cancer 2009;101(4):722–33. DOI: 10.1038/sj.bjc.6605179.
11. Hawkins C., Walker E., Mohamed N. et al. BRAF-KIAA1549 fusion predicts better clinical outcome in pediatric low-rade astrocytoma. Clin Cancer Res 2011;17(14):4790–8. DOI: 10.1158/1078-0432.CCR-11-0034.
12. Arun D., Gutmann D.H. Recent advances in neurofibromatosis type 1. Curr Opin Neurol 2004;17(2):101–5.
13. Akinleye A., Furqan M., Mukhi N. et al. MEK and the inhibitors: from bench to bedside. J Hematol Oncol 2013;6(1):27. DOI: 10.1186/1756-8722-6-27.
14. Владимирова Л.Ю. МЕК как терапевтическая мишень в онкологии. Злокачественные опухоли 2015;16(4):20–7. DOI: 10.18027/2224-5057-2015-4s2-20-27.
15. Banerjee A., Jakacki R.I., Onar-Thomas A. et al. A phase I trial of the MEK inhibitor selumetinib (AZD6244) in pediatric patients with recurrent or refractory lowgrade glioma: a Pediatric Brain Tumor Consortium (PBTC) study. Neuro Oncol 2017;19(8):1135–44. DOI: 10.1093/neuonc/now282.
16. Bouffet E., Kieran M., Hargrave D. et al. Trametinib therapy in pediatric patients with low-grade gliomas (LGG) with BRAF gene fusion; a disease-specific cohort in the first pediatric testing of trametinib. Neuro Oncol 2018;20(Suppl 2):i114. DOI: 10.1093/neuonc/noy059.387.
17. Nicolaides T., Nazemi K., Crawford J. et al. A safety study of vemurafenib, an oral inhibitor of BRAFV600E, in children with recurrent/refractory BRAFV600E mutant brain tumor: PNOC-002. Neuro Oncol 2017;19(Suppl 6):vi188. DOI: 10.1093/neuonc/nox168.761.
18. Kieran M.W., Hargrave D.R., Cohen K.J. et al. Phase 1 study of dabrafenib in pediatric patients (pts) with relapsed or refractory BRAFV600E high- and low-grade gliomas (HGG, LGG), Langerhans cell histiocytosis (LCH), and other solid tumors (OST). J Clin Oncol 2015;33(Suppl 15).
19. Franz D.N., Belousova E., Sparagana S. et al. Efficacy and safety of everolimus for subependymal giant cell astrocytomas associated with tuberous sclerosis complex (EXIST-1): a multicentre, randomised, placebo-controlled phase 3 trial. Lancet 2013;381(9861):125–32. DOI: 10.1016/S0140-6736(12)61134-9.
20. Franz D.N., Agricola K., Mays M. et al. Everolimus for subependymal giant cell astrocytoma: 5-year final analysis. Ann Neurol 2015;78(6):929–38. DOI: 10.1002/ana.24523.
21. Kieran M., Yao X., Macy M. et al. A prospective multi-institutional phase II study of everolimus (Rad001), an mTOR inhibitor, in pediatric patients with recurrent or progressive low-grade glioma. A poetic consortium trial. Pediatr Blood Cancer 2013;(60):19.
22. Yalon M., Rood B., MacDonald T. et al. A feasibility and efficacy study of rapamycin and erlotinib for recurrent pediatric low-grade glioma (LGG). Pediatr Blood Cancer 2013;(60):71–6. DOI: 10.1002/pbc.24142.
23. Hwang E.I., Jakacki R.I., Fisher M.J. et al. Long-term efficacy and toxicity of bevacizumab-based therapy in children with recurrent low-grade gliomas. Pediatr Blood Cancer 2013;60(5):776–82. DOI: 10.1002/pbc.24297.
24. Kieran M.W., Chi S., Goldman S. et al. A phase I trial and PK study of cediranib (AZD2171), an orally bioavailable panVEGFR inhibitor, in children with recurrent or refractory primary CNS tumors. Childs Nerv Syst 2015;31(9):1433–45. DOI: 10.1007/s00381-015-2812-5.
25. Grill J., Le Deley M.S., Le Teuff G. et al. Dose-finding study of vinblastine in combination with nilotinib in children, adolescents and young adults with refractory or recurrent low-grade glioma: results of the ITCC/SIOPE-Brain VINILO phase I trial (NCT01887522). J Clin Oncology 2016; 34(Suppl 15):10555. DOI: 10.1200/ JCO.2016.34.15_suppl.10555.
26. DuBois S.G., Shusterman S., Ingle A.M. et al. Phase I and pharmacokinetic study of sunitinib in pediatric patients with refractory solid tumors: a children’s oncology group study. Clin Cancer Res 2011;17(15):5113–22. DOI: 10.1158/1078-0432.CCR-11-0237.
27. Karajannis M.A., Legault G., Fisher M.J. et al. Phase II study of sorafenib in children with recurrent or progressive low-grade astrocytomas. Neuro Oncol 2014;16(10): 1408–16. DOI: 10.1093/neuonc/nou059.
28. Miller C., Guillaume D., Dusenbery K. et al. Report of effective trametinib therapy in 2 children with progressive hypothalamic optic pathway pilocytic astrocytoma: documentation of volumetric response. J Neurosurg Pediatr 2017;19(3):1–6. DOI: 10.3171/2016.9.PEDS16328.
29. Wagner L.M., Myseros J.S., Lukins D.E. et al. Targeted therapy for infants with diencephalic syndrome: a case report and review of management strategies. Pediatr Blood Cancer 2018;65(5):е26917. DOI: 10.1002/pbc.26917.
30. Kondyli M., Larouche V., Saint-Martin C. et al. Trametinib for progressive pediatric low-grade gliomas. J Neurooncol 2018; 140(2):435–44. DOI: 10.1007/s11060018-2971-9.
31. Knight T., Shatara M., Carvalho L. et al. Dramatic response to trametinib in a male child with neurofibromatosis type 1 and refractory astrocytoma. Pediatr Blood Cancer 2019;66(10):e27474. DOI: 10.1002/pbc.27474.
32. Schindler G., Capper D., Meyer J. et al. Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol 2011;121(3):397–405. DOI: 10.1007/s00401-011-0802-6.
33. Dias-Santagata D., Lam Q., Vernovsky K. et al. BRAF V600E mutations are common in pleomorphic xanthoastrocytoma: diagnostic and therapeutic implications. PLoS One 2011;6(3):е17948. DOI: 10.1371/journal.pone.0017948.
34. Dougherty M.J., Santi M., Brose M.S. et al. Activating mutations in BRAF characterize a spectrum of pediatric low-grade gliomas. Neuro Oncol 2010;12(7):621–30. DOI: 10.1093/neuonc/noq007.
35. Rush S., Foreman N., Liu A. Brainstem ganglioglioma successfully treated with vemurafenib. J Clin Oncol 2013;31(10):159–60. DOI: 10.1200/JCO.2012.44.1568.
36. Del Bufalo F., Carai A., Figà-Talamanca L. et al. Response of recurrent BRAFV600E mutated ganglioglioma to Vemurafenib as single agent. J Transl Med 2014;12:356. DOI: 10.1186/s12967-014-0356-1.
37. Bufalo F., Cacchione A., Carai A. et al. BRAFv600E inhibitor (Vemurafenib) in pediatric patients affected by BRAFv6000E mutated gliomas. Neuro Oncol 2016;18(Suppl 3):iii24. DOI: 10.1093/neuonc/now069.04.
38. Del Bufalo F., Ceglie G., Cacchione A. et al. BRAFV600E inhibitor (vemurafenib) for BRAF V600E mutated low grade gliomas. Front Oncol 2018;8:526. DOI: 10.3389/fonc.2018.00526.
39. Pavelka Z., Berkovcova J., Skotakova J. et al. Objective response to Vemurafenib in a child treated for metastatic desmoplastic infantile astrocytoma. Neuro Oncol 2016;18(Suppl 3):iii92. DOI: 10.1093/neuonc/now075.60.
40. Skrypek M., Foreman N., Guillaume D., Moertel C. Pilomyxoid astrocytoma treated successfully with vemurafenib. Pediatr Blood Cancer 2014;61(11):2099–100. DOI: 10.1002/pbc.25084.
41. Lassaletta A., Guerreiro Stucklin A., Ramaswamy V. et al. Profound clinical and radiological response to BRAF inhibition in a 2-month-old diencephalic child with hypothalamic/chiasmatic glioma. Pediatr Blood Cancer 2016;63(11):2038–41. DOI: 10.1002/pbc.26086.
42. Rizos H., Menzies A.M., Pupo G.M. et al. BRAF inhibitor resistance mechanisms in metastatic melanoma: Spectrum and cli nical impact. Clin Cancer Res 2014;20(7):1965–77. DOI: 10.1158/10780432.CCR-13-3122.
43. McCubrey J.A., Steelman L.S., Chappell W.H. et al. Mutations and deregulation of Ras/ Raf/MEK/ERK and PI3K/PTEN/Akt/ mTOR cascades which alter therapy response. Oncotarget 2012;3(9):954–87. DOI: 10.18632/oncotarget.652.
44. Lam C., Bouffet E., Tabori U. et al. Rapamycin (sirolimus) in tuberous sclerosis associated pediatric central nervous system tumors. Pediatr Blood Cancer 2010;54(3): 476–9. DOI: 10.1002/pbc.22298.
45. Franz D.N., Leonard J., Tudor C. et al. Rapamycin causes regression of astrocytomas in tuberous sclerosis complex. Ann Neurol 2006;59(3):490–8. DOI: 10.1002/ana.20784.
46. Krueger D.A., Care M.M., Holland K. et al. Everolimus for subependymal giantcell astrocytomas in tuberous sclerosis. N Engl J Med 2010;363(19):1801–11. DOI: 10.1056/NEJMoa1001671.
47. Vézina C., Kudelski A., Sehgal S.N. Rapamycin(AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot (Tokyo) 1975;28(10): 721–6. DOI: 10.7164/antibiotics.28.721.
48. Sehgal S.N., Baker H., Vézina C. Rapamycin (AY-22,989), a new antifungal antibiotic. II. Fermentation, isolation and characterization. J Antibio t (Tokyo) 1975;28(10): 727–32. DOI: 10.7164/antibiotics.28.727.
49. Martel R.R., Klicius J., Galet S. Inhibition of the immune response by rapamycin, a new antifungal antibiotic. Can J Physiol Pharmacol 1977;55(1):48–51. DOI: 10.1139/y77-007.
50. Houchens D.P., Ovejera A.A., Riblet S.M., Slagel D.E. Human brain tumor xenografts in nude mice as a chemotherapy model. Eur J Cancer Clin Oncol 1983;19(6):799–805.
51. Morris R.E., Wu J., Shorthouse R. A study of the contrasting effects of cyclosporine, FK 506, and rapamycin on the suppression of allograft rejection. Transpl Proc 1990;22(4):1638–41.
52. Dilling M.B., Dias P., Shapiro D.N. et al. Rapamycin selectively inhibits the growth of childhood rhabdomyosarcoma cells through inhibition of signaling via the type i insulin-like growth factor receptor. Cancer Res 1994;54(4):903–7.
53. Heitman J., Movva N.R., Hall M.N. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 1991;253(5022):905–9. DOI: 10.1126/science.1715094.
54. Van Duyne G.D., Standaert R.F., Karplus P.A. et al. Atomic structure of FKBP-FK506, an immunophilinimmunosuppressant complex. Science 1991;252(5007):839–42. DOI: 10.1126/science.1709302.
55. Choi J., Chen J., Schreiber S.L., Clardy J. Structure of the FKBP12-rapamycin complex interacting with the binding domain of human FRAP. Science 1996;273(5272):239–42. DOI: 10.1126/science.273.5272.239.
56. Yang H., Rudge D.G., Koos J.D. et al. mTOR kinase structure, mechanism and regulation. Nature 2013;497(7448):217–23. DOI: 10.1038/nature12122.
57. Kahan B.D., Steinberg S., Bartlet S. et al. Efficacy of sirolimus compared with azathioprine for reduction of acute renal allograft rejection: a randomised multicentre study. The Rapamune US Study Group. Lancet 2000;356(9225):194–202. DOI: 10.1016/S0140-6736(00)02480-6.
58. Bissler J.J., McCormack F.X., Young L.R. et al. Sirolimus for angiomyolipoma in tuberous sclerosis complex or lymphangioleiomyomatosis. N Engl J Med 2008;358(2):140–51. DOI: 10.1056/NEJMoa063564.
59. McCormack F.X., Inoue Y., Moss J. et al. Efficacy and safety of sirolimus in lymphan gioleiomyomatosis. N Engl J Med 2011;364(17):1595–606. DOI: 10.1056/NEJMoa1100391.
60. Распоряжение Правительства Российской Федерации от 7 декабря 2011 г. № 2199-р Об утверждении перечня жизненно необходимых и важнейших лекарственных препаратов на 2012 г.
61. Распоряжение Правительства Российской Федерации от 10 декабря 2018 г. № 2738-р Об утверждении перечня жизненно необходимых и важнейших лекарственных препаратов для медицинского применения на 2019 г.
62. Hütt-Cabezas M., Karajannis M.A., Zagzag D. et al. Activation of MTORC1/ MTORC2 signaling in pediatric low-grade glioma and pilocytic astrocytoma reveals mTOR as a therapeutic target. Neuro Oncol 2013;15(12):1604–14. DOI: 10.1093/neuonc/not132.
63. Jentoft M., Giannini C., Cen L. et al. Phenotypic variations in NF1-associated low grade astrocytomas: possible role for increased mTOR activation in a subset. Int J Clin Exp Pathol 2010;4(1):43–57.
64. Guertin D.A., Sabatini D.M. The Pharmacology of mTOR Inhibition. Sci Signal 2009;2(67):pe24. DOI: 10.1126/scisignal.267pe24.
65. Feldman M.E., Shokat K.M. New inhibitors of the PI3K-Akt-mTOR pathway: insights into mTOR signaling from a new generation of Tor Kinase Domain Inhibitors (TORKinibs). Curr Top Microbiol Immunol 2010;347(1):241–62. DOI: 10.1007/82-2010-64.
66. Sun S.Y. mTOR kinase inhibitors as potential cancer therapeutic drugs. Cancer Lett 2013;340(1):1–8. DOI: 10.1016/j.canlet.2013.06.017.
67. Lemmon M.A., Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell 2010;141(7):1117–34. DOI: 10.1016/j.cell.2010.06.011.
68. Shibuya M. Vascular endothelial growth factor(VEGF) and its receptor (VEGFR) signaling in angiogenesis: a crucial target for anti- and pro-angiogenic therapies. Genes Cancer 2011;2(12):1097–105. DOI: 10.1177/1947601911423031.
69. Couec M.L., André N., Thebaud E. et al. Bevacizumab and irinotecan in children with recurrent or refractory brain tumors: toxicity and efficacy trends. Pediatr Blood Cancer 2012;59(1):34–8. DOI: 10.1002/pbc.24066.
70. Nazarenko I., Hede S.M., He X. et al. PDGF and PDGF receptors in glioma. Ups J Med Sci 2012;117(2):99–112. DOI: 10.3109/03009734.2012.665097.
71. McLaughlin M.E., Robson C.D., Kieran M.W. et al. Marked regression of metastatic pilocytic astrocytoma during treatment with imatinib mesylate (STI-571, Gleevec): a case report and laboratory investigation. J Pediatr Hematol Oncol 2003;25(8):644–8. DOI: 10.1097/00043426-200308000-00012.
72. Peyrl A., Azizi A., Czech T. et al. Tumor stabilization under treatment with imatinib in progressive hypothalamic-chiasmatic glioma. Pediatr Blood Cancer 2009;52(4): 476–80. DOI: 10.1002/pbc.21881.
73. Wetmore C., Daryani V.M., Billups C.A. et al. Phase II evaluation of sunitinib in the treatment of recurrent or refractory high‐grade glioma or ependymoma in children: a children’s Oncology Group Study ACNS1021. Cancer Med 2016;5(7):1416–24. DOI: 10.1002/cam4.713.
74. Sievert A.J., Lang S.S., Boucher K.L. et al. Paradoxical activation and RAF inhibitor resistance of BRAF protein kinase fusions characterizing pediatric astrocytomas. Proc Natl Acad Sci USA 2013;110(15): 5957–62. DOI: 10.1073/pnas.1219232110.
Рецензия
Для цитирования:
Валиахметова Э.Ф., Ясько Л.А., Папуша Л.И., Друй А.Е., Карачунский А.И. Перспективы таргетной терапии глиом низкой степени злокачественности у детей. Успехи молекулярной онкологии. 2019;6(2):28-41. https://doi.org/10.17650/2313-805X-2019-6-2-28-41
For citation:
Valiakhmetova E.F., Yasko L.A., Papusha L.I., Druy A.E., Karachunsky A.I. Promises of targeted therapy for low grade gliomas in children. Advances in Molecular Oncology. 2019;6(2):28-41. (In Russ.) https://doi.org/10.17650/2313-805X-2019-6-2-28-41