Vemurafenib resistant melanoma cells acquire mesenchymal stem cell-like properties
https://doi.org/10.17650/2313-805X-2019-6-4-47-57
Abstract
Background. Activating mutations in the BRAF gene leads to a constitutive activation of the MAPK signaling. The highly selective BRAFV600E inhibitor, vemurafenib, improves the overall survival of BRAF-mutant melanoma patients. However, despite the excellent results of response rate, the average duration of the response was short and acquired resistance develops in most BRAF mutated melanoma patients within a few months.
Objective: to derive melanoma cell lines from surgical species of patients with BRAF mutant melanomas resistant to vemurafenib and to elucidate the mechanisms involved in acquired drug resistance.
Materials and methods. Mel Ki and Mel F1702 melanoma cells were obtained from metastases of disseminated melanoma patients with BRAFV600E mutation. 2D tumor cell culture, MTT test, immunicytochemistry, flow cytometry, real-time polimerase chain reaction and osteogenic and adipocytic differentiation were used in the study.
Results. We have derived two melanoma cell lines Mel Ki and Mel F1702 from tumor samples of patients with BRAFV600E mutation resistant to vemurafenib. These cells were homogenous and had fibroblastic morphology. The IC50 values for Mel Ki and Mel F1702 were 4.7 and 6.3 μM, respectively. The expression of cancer-testis antigens was not detected in both types of cells suggesting the stemness of Mel Ki and Mel F1702 melanoma cells. The immunophenotypic profile of the vemurafenib resistsant melanoma cells showed the expression of typical mesenchymal stem cells markers such as CD90, CD105 and CD44. In addition, we found that the melanoma cell lines derived from tumor resistant to vemurafenib differentiated into osteoblastand adipocyte-like cells.
Conclusion. In this study we are offering an experimental evidence of the phenotypic transition of the vemurafenib-resistant melanoma cells into mesenchymal stem-like cells.
About the Authors
A. A. VartanianRussian Federation
24 Kashirskoe Shosse, Moscow 115478
O. S. Burova
Russian Federation
24 Kashirskoe Shosse, Moscow 115478
Kh. S. Vishnyakova
Russian Federation
32 Vavilova St., Moscow 119991
I. V. Samoylenko
Russian Federation
24 Kashirskoe Shosse, Moscow 115478
V. A. Misyurin
Russian Federation
24 Kashirskoe Shosse, Moscow 115478
E. E. Egorov
Russian Federation
32 Vavilova St., Moscow 119991
O. O. Ryabaya
Russian Federation
24 Kashirskoe Shosse, Moscow 115478
M. A. Baryshnikova
Russian Federation
24 Kashirskoe Shosse, Moscow 115478
References
1. Trotter M.J. Melanoma margin assessment. Clin Lab Med 2011;31(2): 289–300. DOI: 10.1016/j.cll.2011.03.006.
2. Millet A., Martin A.R., Ronco C. et al. metastatic melanoma: insights into the evolution of the treatments and future challenges. Med Res Rev 2017;37(1):98– 148. DOI: 10.1002/med.21404.
3. Davies H., Bignell G.R., Cox C. et al. Mutations of the BRAF gene in human cancer. Nature 2002;417(6892):949–54. DOI: 10.1038/nature00766.
4. Long G.V., Menzies A.M., Nagrial A.M. et al. Prognostic and clinicopathologic associations of oncogenic braf in metastatic melanoma. J Clin Oncol 2011;29(10):1239–46. DOI: 10.1200/JCO.2010.32.4327.
5. Flaherty K.T., Puzanov I., Kim K.B. et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med 2010;363(9):809–19. DOI: 10.1056/NEJMoa1002011.
6. Zhang Y., Weinberg R.A. Epithelial-tomesenchymal transition in cancer: complexity and opportunities. Front Med 2018;12(4):361–73. DOI: 10.1007/s11684-018-0656-6.
7. Škovierová H., Okajčeková T., Strnádel J. et al. Molecular regulation of epithelialtomesenchymal transition in tumorigenesis. Int J Mol Med 2017;41(3):1187–200. DOI: 10.3892/ijmm.2017.3320.
8. Yan S., Holderness B.M., Li Z. et al. Epithelial-mesenchymal expression phenotype of primary melanoma and matched metastases and relationship with overall survival. Anticancer Res 2016;36(12):6449–56. DOI: 10.21873/anticanres.11243.
9. Ryabaya O.O., Tsyganova I.V., Sidorova T.A. et al. Effect of B-RAFV600 activating gene mutations on the ability of melanoma cells to autophagy. Soft Ttissue Sarcoma and Skin Cancer (Russ) 2013;3:68–72.
10. Mikhailova I.N., Lukashina M.I., Baryshnikov A.Yu. et al. Melanoma cell lines as the basis for antitumor vaccine preparation. Vest Ross Akad Med Nauk 2005;7:37–40.
11. Garbe C., Eigentler T.K. Vemurafenib. Recent Results Cancer Res 2018;211:77– 89. DOI: 10.1007/978-3-319-91442-8_6.
12. Nakamura M., Tokura Y. Epithelialmesenchymal transition in the skin. J Dermatol Sci 2011;61(1):7–13. DOI: 10.1016/j.jdermsci.2010.11.015.
13. Li F.Z., Dhillon A.S., Anderson R.L. et al. Phenotype switching in melanoma: implications for progression and therapy. Front Oncol 2015;5:31. DOI: 10.3389/fonc.2015.00031.
14. Whitehurst A.W. Cause and consequence of cancer/testis antigen activation in cancer. Annu Rev Pharmacol Toxicol 2014;54:251–72. DOI: 10.1146/annurevpharmtox011112-140326.
15. Hermes N., Kewitz S., Staege M.S. Preferentially expressed antigen in melanoma (PRAME) and the PRAME family of leucine-rich repeat proteins. Curr Cancer Drug Targets 2016;16(5):400–14. DOI: 10.2174/1568009616666151222151818.
16. Svobodová S., Browning J., MacGregor D. et al. Cancer-testis antigen expression in primary cutaneous melanoma has independent prognostic value comparable to that of Breslow thickness, ulceration and mitotic rate. Eur J Cancer 2001;47(3):460–9. DOI: 10.1016/j.ejca.2010.09.042.
17. Girouard S.D., Murphy G.F. Melanoma stem cells: not rare, but well done. Lab Invest 2011;91(5):647–64. DOI: 10.1038/labinvest.2011.50.
18. Weishaupt C., Munoz K.N., Buzney E. et al. T-cell distribution and adhesion receptor expression in metastatic melanoma. Clin Cancer Res 2007;13(9): 2549–56. DOI: 10.1158/1078-0432.CCR-06-2450.
19. Lv F.J., Tuan R.S., Cheung K.M. et al. Concise review: the surface markers and identity of human mesenchymal stem cells. Stem Cells 2014;32(6):1408–19. DOI: 10.1002/stem.1681.
20. Bollag G., Tsai J., Zhang J. et al. Vemurafenib: the first drug approved for BRAF-mutant cancer. Nat Rev Drug Dis 2012;11(11):873–86. DOI: 10.1038/nrd3847.
21. Caramel J., Papadogeorgakis E., Hill L. et al. A switch in the expression of embryonic EMT-inducers drives the development of malignant melanoma. Cancer Cell 2013;24(4):466–80. DOI: 10.1016/j.ccr.2013.08.018.
22. Nettersheim D., Arndt I., Sharma R. et al. The cancer/testis-antigen PRAME supports the pluripotency network and represses somatic and germ cell differentiation programs in seminomas. Br J Cancer 2016;115(4):454–64. DOI: 10.1038/bjc.2016.187.
23. Reagan M.R., Kaplan D.L. Concise review: Mesenchymal stem cell tumor‑homing: detection methods in disease model systems. Stem Cell 2011;29(6):920–7. DOI: 10.1002/stem.645.
24. Sviatoha V., Tani E., Kleina R. et al. Immunohistochemical analysis of the S100A1, S100B, CD44 and Bcl-2 antigens and the rate of cell proliferation assessed by Ki-67 antibody in benign and malignant melanocytic tumours. Melanoma Res 2010;20(2):118–25. DOI: 10.1097/CMR.0b013e3283350554.
25. Herrera-Molina R., Valdivia A., Kong M. et al. Thy-1-interacting molecules and cellular signaling in cis and trans. Int Rev Cell Mol Biol 2013;306:163–216. DOI: 10.1016/B978-0-12-407695-2.00004-4.
26. Salgado K.B., Toscani N.V., Silva L.L. et al. Immunoexpression of endoglin in brain metastasis secondary to malignant melanoma: evaluation of angiogenesis and comparison with brain metastasis secondary to breast and lung carcinomas. Clin Exp Metastasis 2007;24(6):403–10. DOI: 10.1007/s10585-007-9077-7.
27. Garulli C., Kalogris C., Pietrella L. et al. Dorsomorphin reverses the mesenchymal phenotype of breast cancer initiating cells by inhibition of bone morphogenetic protein signaling. Cell Signa l 2014;26(2):352–62. DOI: 10.1016/j.cellsig.2013.11.022.
28. Pavon L.F., Sibov T.T., de Oliveira R.C. et al. Mesenchymal stem cell-like properties of CD133 glioblastoma initiating cells. Oncotarget 2016;7(26):40546–57. DOI: 10.18632/oncotarget.9658.
29. Dhillon S. dabrafenib plus trametinib: a review in advanced melanoma with a BRAF (V600) mutation. Target Oncol 2016;11(3):417–28. DOI: 10.1007/s11523-016-0443-8.
30. Nazarian R., Shi H., Wang Q. et al. Melanomas acquire resistance to BRAF(V600E) inhibition by RTK or N-RAS upregulation. Nature 2010;4:973–7.
31. Jiang C.C., Lai F., Thorne R.F. et al. MEK-Independent Survival of BRAFV600E Melanoma Cells Selected for Resistance to Apoptosis Induced by the RAF Inhibitor PLX4720. Clin Cancer Res 2010;17(4):721–30.
32. Corcoran R.B., Dias-Santagata D., Bergethon K. et al. BRAF gene amplification can promote acquired resistance to MEK inhibitors in cancer cells harboring the BRAF V600E mutation. Sci Signal 2010;3(149):ra84. DOI: 10.1126/scisignal.2001148.
33. Nathanson K.L., Martin A.M., Wubbenhorst B. et al. Tumor genetic analyses of patients with metastatic melanoma treated with the BRAF inhibitor dabrafenib (GSK2118436). Clin Cancer Res 2013;19(17):4868–78. DOI: 10.1158/1078-0432.CCR-13-0827.
34. Wagle N., Emery C., Berger M.F. et al. Dissecting therapeutic resistance to RAF inhibition in melanoma by tumor genomic profiling. J Clin Oncol 2011;29(22):3085–96. DOI: 10.1200/JCO.2010.33.2312.
Review
For citations:
Vartanian A.A., Burova O.S., Vishnyakova Kh.S., Samoylenko I.V., Misyurin V.A., Egorov E.E., Ryabaya O.O., Baryshnikova M.A. Vemurafenib resistant melanoma cells acquire mesenchymal stem cell-like properties. Advances in Molecular Oncology. 2019;6(4):47-57. (In Russ.) https://doi.org/10.17650/2313-805X-2019-6-4-47-57