Anti-cancer activity of сuraxin CBL0137 on the models of acute leukemia in vitro
https://doi.org/10.17650/2313-805X-2019-6-4-58-68
Abstract
Background. Curaxin CBL0137 is a novel non-genotoxic compound with anti-cancer activity based on CBL0137 ability of non-covalent interaction with DNA causing histone chaperone FACT relocation. Anti-cancer activity of this drug was demonstrated previously on the wide panel of solid cancer models in vitro and in vivo.
Objectives. Estimation of anticancer effects of CBL0137 on the acute myeloblastic leukemia cells (THP-1) and acute lymphoblastic leukemia (CCRF-CEM).
Materials and methods. CBL0137 cytotoxicity was analyzed using the MTT test, the effects on the cell cycle and the induction of apoptosis was assessed by flow cytometry, the activity of signaling pathways in cells treated with CBL0137 was determined by real-time polymerase chain reaction.
Results. Cell treatment with CBL0137 led to cell cycle arrest and apoptosis induction. In the study of CBL0137 effect on target gene clusters of 10 signal transduction pathways involved in the pathogenesis of acute leukemia we have showed that CBL0137 inhibited the expression of down-stream genes of WNT and Hedgehog signaling in both cell lines. In THP-1 cells we also observed the inhibition of the expression of PPARγ target and hypoxia-activated genes. In CCRF-CEM cells CBL0137 also induced the expression of Notch signaling target genes.
Conclusion. The antitumor activity of CBL0137 was demonstrated on acute leukemia cell cultures, the drug possesses cytotoxicity, causes cell cycle arrest and activation of apoptosis. Significant changes in the expression of efferent gene clusters of several signaling pathways were observed in the cells treated with CBL0137.
Keywords
About the Authors
T. I. FetisovRussian Federation
24 Kashirskoe Shosse, Moscow 115478
K. I. Kirsanov
Russian Federation
24 Kashirskoe Shosse, Moscow 115478,
6 Miklukho-Maklaya St., Moscow 117198
A. A. Borunova
Russian Federation
24 Kashirskoe Shosse, Moscow 115478
M. N. Zatsepina
Russian Federation
Build. 2, 8 Trubetskaya St., Moscow 119991
E. A. Lesovaya
Russian Federation
24 Kashirskoe Shosse, Moscow 115478,
9 Vysokovol'tnaya St., Ryazan 390026
T. N. Zabotina
Russian Federation
24 Kashirskoe Shosse, Moscow 115478
G. A. Belitsky
Russian Federation
24 Kashirskoe Shosse, Moscow 115478
M. G. Yakubovskaya
Russian Federation
24 Kashirskoe Shosse, Moscow 115478
References
1. Parovichnikova E.N., Troitskaya V.V., Sokolov A.N. et al. Interim results of the Phnegative acute lymphoblastic leukemia treatment in adult patients (results of Russian research group of ALL treatment (RALL)). Onkogematologiya = Oncohematology 2014;9(3):6–15. (In Russ.).
2. Clinical recommendations for the diagnosis and treatment of acute myeloid leukemia in adults. Eds.: V.G. Savchenko, E.N. Parovichnikova, B.V. Afanasyeva et al. Moscow., 2018. (In Russ.).
3. Grant M.A., Baron R.M., Macias A.A. et al. Netropsin improves survival from endotoxaemia by disrupting HMGA1 binding to the NOS2 promoter. Biochem J 2009;418(1):103–12. DOI: 10.1042/BJ20081427.
4. Kirsanov K.I., Kotova E., Makhov P. et al. Minor grove binding ligands disrupt PARP-1 activation pathways. Oncotarget 2014;5(2):428–37. DOI: 10.18632/oncotarget.1742.
5. Fleyshman D., Prendergast L., Safina A. et al. Level of FACT defines the transcriptional landscape and aggressive phenotype of breast cancer cells. Oncotarget 2017;8(13):20525–42. DOI: 10.18632/oncotarget.15656.
6. Burkhart C., Fleyshman D., Kohrn R. et al. Curaxin CBL0137 eradicates drug resistant cancer stem cells and potentiates efficacy of gemcitabine in preclinical models of pancreatic cancer. Oncotarget 2014;5(22):11038–53. DOI: 10.18632/oncotarget.2701.
7. Barone T.A., Burkhart C.A., Safina A. et al. Anticancer drug candidate CBL0137, which inhibits histone chaperone FACT, is efficacious in preclinical orthotopic models of temozolomide-responsive and -resistant glioblastoma. Neuro Oncol 2017;19(2):186–96. DOI: 10.1093/neuonc/now141.
8. De S., Lindner D.J., Coleman C.J. et al. The FACT inhibitor CBL0137 synergizes with cisplatin in small-cell lung cancer by increasing NOTCH1 expression and targeting tumor-initiating cells. Cancer Res 2018;78(9):2396–406. DOI: 10.1158/0008-5472.CAN-17-1920.
9. Gasparian A.V., Burkhart C.A., Purmal A.A. et al. Curaxins: anticancer compounds that simultaneously suppress NF-κB and activate p53 by targeting FACT. Sci Transl Med 2011;3(95):95ra74.
10. Leonova K., Safina A., Nesher E. et al. TRAIN (Transcription of Repeats Activates INterferon) in response to chromatin destabilization induced by small molecules in mammalian cells. Elife 2018;7. DOI: 10.7554/eLife.30842.
11. Kirsanov K.I., Fetisov T., Lesovaya E.A. et al. Prevention of colorectal carcinogenesis by DNA binding small molecule curaxin CBL0137 involves suppression of Wnt signaling. Cancer Prev Res (Phila) 2019. DOI: 10.1158/19406207.CAPR-19-0198.
12. Safina A., Cheney P., Pal M. et al. FACT is a sensor of DNA torsional stress in eukaryotic cells. Nucleic Acids Res 2017;45(4):1925–45. DOI: 10.1093/nar/gkw1366.
13. Fetisov T.I., Tilova L.R., Lesovaya E.A. et al. Antitumor effect ofthecuraxin CBL0137 on themodels ofcolon cancer. Uspekhi molekulyarnoy onkologii = Advances in Molecular Oncology 2016;3(3):67–72. (In Russ.).
14. Lock R., Carol H., Maris J.M. et al. Initial testing (stage 1) of the curaxin CBL0137 by the pediatric preclinical testing program. Pediatr Blood Cancer 2017. DOI: 10.1002/pbc.26263.
15. Somers K., Kosciolek A., Bongers A. et al. Potent antileukemic activity of curaxin CBL0137 against MLL–rearranged leukemia. Int J Cancer 2019. DOI: 10.1002/ijc.32582.
16. Reya T., Clevers H. Wnt signalling in stem cells and cancer. Nature 2005;434:843–50.
17. Rulifson I.C., Karnik S.K., Heiser P.W. et al. Wnt signaling regulates pancreatic beta cell proliferation. Proc Natl Acad Sci USA 2007;104(15):6247–52. DOI: 10.1073/pnas.0701509104.
18. Fetisov T.I., Lesovaya E.A., Yakubovskaya M.G. et al. Alterations in WNT signaling in leukemias. Biochemistry (Moscow) 2018;83(12):1448–58. DOI: 10.1134/S0006297918120039.
19. Jia Y., Wang Y., Xie J. The Hedgehog pathway: role in cell differentiation, polarity and proliferation. Arch Toxicol 2015;89(2):179–91. DOI: 10.1007/s00204-014-1433-1.
20. Rowbotham N.J., HagerTheodorides A.L., Cebecauer M. et al. Activation of the Hedgehog signaling pathway in T-lineage cells inhibits TCR repertoire selection in the thymus and peripheral T-cell activation. Blood 2007;109(9):3757–66. DOI: 10.1182/blood-2006-07-037655.
21. Campbell V., Copland M. Hedgehog signaling in cancer stem cells: a focus on hematological cancers. Stem Cells Cloning 2015;8:27–38. DOI: 10.2147/SCCAA.S58613.
22. Griessinger E., Anjos-Afonso F., Pizzitola I. et al. A niche-like culture system allowing the maintenance of primary human acute myeloid leukemiainitiating cells: a new tool to decipher their chemoresistance and self-renewal mechanisms. J Cell Physiol 2012;227(6):2750–8.
23. Chapuis N., Poulain L., Birsen R. et al. Rationale for targeting deregulated metabolic pathways as a therapeutic strategy in acute myeloid leukemia. Front Oncol 2019;9:405. DOI: 10.3389/fonc.2019.00405.
24. Sak K., Everaus H. Established Human Cell Lines as Models to Study Antileukemic Effects of Flavonoids. Curr Genomics 2017;18(1):3–26. DOI: 10.2174/1389202917666160803165447.
25. Weng A.P., Ferrando A.A., Lee W. et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 2004;306(5694):269–71. DOI: 10.1126/science.1102160.
26. Sharma A., Gadkari R.A., Ramakanth S.V. et al. A novel monoclonal antibody against Notch1 targets leukemia-associated mutant Notch1 and depletes therapy resistant cancer stem cells in solid tumors. Sci Rep 2015;5:11012. DOI: 10.1038/srep11012.
27. Wang J., Sullenger B.A., Rich J.N. Notch signaling in cancer stem cells. Adv Exp Med Biol 2012;727:174–85. DOI: 10.1007/978-1-4614-0899-4_13.
28. Purow B.W., Haque R.M., Noel M.W. et al. Expression of Notch-1 and its ligands, Delta-like-1 and Jagged-1, is critical for glioma cell survival and proliferation. Cancer Res 2005;65(6):2353–63. DOI: 10.1158/00085472.CAN-04-1890.
29. Platta C.S., Greenblatt D.Y., Kunnimalaiyaan M., Chen H. Valproic acid induces Notch1 signaling in small cell lung cancer cells. J Surg Res 2008;148(1):31–7. DOI: 10.1016/j.jss.2008.03.008.
30. George J., Lim J.S., Jang S.J. et al. Comprehensive genomic profiles of small cell lung cancer. Nature. 2015; 524(7563):47–53. DOI: 10.1038/nature14664.
31. Kolundzic E., Ofenbauer A., Bulut S.I. et al. FACT sets a barrier for cell fate reprogramming in caenorhabditis elegans and human cells. Dev Cell 2018;46(5):611–26.e12. DOI: 10.1016/j.devcel.2018.07.006.
32. Jin M.Z., Xia B.R., Xu Y., Jin W.L Curaxin CBL0137 exerts anticancer activity via diverse mechanisms. Front Oncol 2018;8:598. DOI: 10.3389/fonc.2018.00598.
Review
For citations:
Fetisov T.I., Kirsanov K.I., Borunova A.A., Zatsepina M.N., Lesovaya E.A., Zabotina T.N., Belitsky G.A., Yakubovskaya M.G. Anti-cancer activity of сuraxin CBL0137 on the models of acute leukemia in vitro. Advances in Molecular Oncology. 2019;6(4):58-68. (In Russ.) https://doi.org/10.17650/2313-805X-2019-6-4-58-68