Differential expression of microRNAs and their target genes in cervical intraepithelial neoplasias of varying severity
https://doi.org/10.17650/2313-805X-2020-7-2-47-61
Abstract
Background. Currently, little is known about the specific microRNAs involved in the development of cervical intraepithelial neoplasia (CIN1, 2, 3) and the transition to cancer in situ (CIS). Our meta-analysis allowed us to isolate 8 microRNAs (hsa-miR-1246, hsa-miR- 145-5p, hsa-miR-196b-5p, hsa-miR-34a-5p, hsa-miR-20a-5p, hsa-miR-21-5p, hsa-miR-375-5p, hsa-miR-96-5p) with potential significance in the progression of precancerous diseases to cervical cancer.
Objective: to analyze the expression features of hsa-miR-1246, hsa-miR-145-5p, hsa-miR-196b-5p, hsa-miR-34a-5p, hsa-miR-20a-5p, hsa-miR-21-5p, hsa-miR-375-5p, hsa-miR-96-5p and their target genes, as well as genes associated with them in common signaling pathways in the tissues of the cervix in patients with CIN1–3 and CIS.
Materials and methods. To assess the expression level of microRNA and matrixRNA, the quantitative polymerase chain reaction in real time method was used. Data analysis was carried out in the Python programming language using the SciPy library. Search for target genes was performed using the TarPmiR algorithm and the overrepresentation of microRNAs in signaling pathways (Over-Representation Analysis) was analyzed. To identify genes associated with target genes in common signaling pathways, GIANT (Genome-scale Integrated Analysis of gene Networks in Tissues) and network integration with several associations algorithms were used.
Results. For microRNAs miR-145, miR-196b, miR-34a, miR-20a, miR-21, miR-375 and miR-96 a decrease in expression was found in the subgroup of patients with CIS, while for 4 microRNAs (miR-145, miR-34a, miR-20a and miR-375), an increase in the expression level was found for CIN1, 2. The detected features of microRNA expression in subgroups of patients with CIN1–3 and CIS also affected the expression of their target genes (CDKN2A, MKI67, TOP2A and CD82), as well as the genes associated with them in common signaling pathways (PGK1, THBS4 (TSP4) and ECM1).
Conclusion. Thus, the study revealed that each degree of CIN is characterized by its own specific molecular profile – the differential expression of microRNAs, their target genes and the genes associated with them in the general signaling pathways.
About the Authors
T. A. DimitriadiRussian Federation
127 Pushkinskaya St., Rostov-on-Don 344010
D. V. Burtsev
Russian Federation
127 Pushkinskaya St., Rostov-on-Don 344010
E. A. Dzhenkova
Russian Federation
63 14 th liniya, Rostov-on-Don 344037
D. S. Kutilin
Russian Federation
63 14 th liniya, Rostov-on-Don 344037
References
1. Ferlay J., Colombet M., Soerjomataram I. et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer 2019;144(8):1941–53. DOI: 10.1002/ijc.31937.
2. Bosch F.X., Broker T.R., Forman D. et al. Comprehensive control of human papillomavirus infections and related diseases. Vaccine 2013;31(7):1–31. DOI: 10.1016/j.vaccine.2013.10.003.
3. McCredie M.R., Paul C., Sharples K.J. et al. Consequences in women of participating in a study of the natural history of cervical intraepithelial neoplasia 3. Aust N Z J Obstet Gynaecol 2010;50(4):363–70. DOI: 10.1111/j.1479-828X.2010.01170.x.
4. Доброхотова Ю.Э., Боровкова Е.И. Международные алгоритмы ведения пациенток с дисплазией шейки матки. Гинекология 2018;20(5):27–32. DOI: 10.26442/2079-5696_2018.5.27-32. [Dobrokhotova Yu.E., Borovkova E.I. International algorithms for the management of patients with uterine cervical dysplasia. Ginekologiya = Gynecology 2018;20(5):27–32. (In Russ.)].
5. Димитриади Т.А., Бурцев Д.В., Дженкова Е.А., Кутилин Д.С. МикроРНК как маркеры прогрессирования предраковых заболеваний в рак шейки матки. Современные проблемы науки и образования 2020:1. Доступно по: http://science-education.ru/ru/article/view?id=29529 (дата обращения 29.05.2020). DOI: 10.17513/spno.29529. [Dimitriadi T.A., Burtsev D.V., Dzhenkova E.A., Kutilin D.S. MicroRNA as markers of pre-cancer diseases progression in cervical cancer. Sovremennye problem nauki i obrazovaniya = Modern Problems of Science and Education 2020:1. Available at: http://science-education.ru/ru/article/view?id=29529(accessed 29.05.2020). (In Russ.)].
6. Wilting S.M., Steenbergen R.D., Tijssen M. et al. Chromosomal signatures of a subset of high-grade premalignant cervical lesions closely resemble invasive carcinomas. Cancer Res 2009;69(2):647–55. DOI: 10.1158/0008-5472.CAN-08-2478.
7. Chomczynski P., Sacchi N. The singlestep method of RNA isolation by acid guanidinium thiocyanate-phenolchloroform extraction: twenty-something years on. Nat Protoc 2006;1(2):581–5. DOI: 10.1038/nprot.2006.83.
8. Кутилин Д.С., Никитин И.С., Кит О.И. Особенности экспрессии генов некоторых транскрипционных факторов при малигнизации тканей тела матки. Успехи молекулярной онкологии 2019;6(1):57–62. DOI: 10.17650/2313-805X-2019-6-1-57-62. [Kutilin D.S., Nikitin I.S., Kit O.I. Features of some transcription factors gene expression in the malignancy tissues of the corpus uteri. Uspekhi molekulyarnoy onkologii = Advances in Molecular Oncology 2019;6(1):57–62. (In Russ.)].
9. Balcells I., Cirera S., Busk P.K. Specific and sensitive quantitative RT-PCR of miRNAs with DNA primers. BMC Biotechnol 2011;11(1):70. DOI: 10.1186/1472-6750-11-70.
10. Vandesompele J., De Preter K., Pattyn F. et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 2002;3(7):research0034. DOI:10.1186/gb-2002-3-7-research0034.
11. Peltier H.J., Latham G.J. Normalization of microRNA expression levels in quantitative RT-PCR assays: identification of suitable reference RNA targets in normal and cancerous human solid tissues. RNA 2008;14(5):844–52. DOI: 10.1261/rna.939908.
12. Shen Y., Li Y., Ye F. et al. Identification of miR-23a as a novel microRNA normalizer for relative quantification in human uterine cervical tissues. Exp Mol Med 2011;43(6):358–66. DOI: 10.3858/emm.2011.43.6.039.
13. Кутилин Д.С., Димитриади С.Н., Водолажский Д.И. и др. Влияние тепловой ишемии-реперфузии на экспрессию апоптоз-регулирующих генов в почечной ткани больных с почечноклеточным раком. Нефрология 2017;21(1):80–6. DOI:10.24884/1561-6274-2017-21-1-80-86. [Kutilin D.S., Dimitriadi S.N., Vodolazhsky D.I. et al. Effect of thermal ischemia-reperfusion on expression of apoptosis-regulating genes in the renal tissue of patients with renal cell carcinoma. Nefrologiya = Nephrology 2017;21(1):80–6. (In Russ.)].
14. Jones E., Oliphant E., Peterson P. SciPy: open source scientific tools for python, 2001. Available at: http://www.scipy.org/.
15. Ding J., Li X., Hu H. TarPmiR: a new approach for microRNA target site prediction. Bioinformatics 2016;32(18):2768–75. DOI: 10.1093/bioinformatics/btw318.
16. Backes C., Khaleeq Q.T., Meese E., Keller A. miEAA: microRNA enrichment analysis and annotation. Nucleic Acids Res 2016;44(W1):W110–6. DOI: 10.1093/nar/gkw345.
17. Greene C.S., Krishnan A., Wong A.K. et al. Understanding multicellular function and disease with human tissue-specific networks. Nat Genet 2015;47(6):569–76. DOI: 10.1038/ng.3259.
18. Кутилин Д.С., Кошелева Н.Г., Гусарева М.А. и др. Копийность генов как фактор радиорезистентности клеток аденокарциномы толстой кишки линии HT-29. Современные проблемы науки и образования 2019:5. Доступно по: http://science-education.ru/ru/article/view?id=29224 (дата обращения 22.05.2020). DOI: 10.17513/spno.29224. [Kutilin D.S., Kosheleva N.G., Gusareva M.A. et al. Gene copy number variation as a factor of radioresistance of colon adenocarcinoma cells of the line HT-29. Sovremennye problem nauki i obrazovaniya = Modern Problems of Science and Education 2019:5. Available at: http://science-education.ru/ru/article/view?id=29224 (accessed 22.05.2020). (In Russ.)].
19. Wang Y., Chen L., Chen B. et al. Mammalian ncRNA-disease repository: a global view of ncRNA-mediated disease network. Cell Death Dis 2013;4(8):e765. DOI: 10.1038/cddis.2013.292.
20. Li B., Hu Y., Ye F. et al. Reduced miR-34a expression in normal cervical tissues and cervical lesions with high-risk human papillomavirus infection. Int J Gynecol Cancer 2010;20(4):597–604. DOI: 10.1111/IGC.0b013e3181d63170.
21. Shishodia G., Shukla S., Srivastava Y. et al. Alterations in microRNAs miR-21 and let-7a correlate with aberrant STAT3 signaling and downstream effects during cervical carcinogenesis. Mol Cancer 2015; 14:116. DOI: 10.1186/s12943-015-0385-2.
22. Li Y., Wang F., Xu J. et al. Progressive miRNA expression profiles in cervical carcinogenesis and identification of HPVrelated target genes for miR-29. J Pathol 2011;224(4):484–95. DOI: 10.1002/path.2873.
23. Bierkens M., Krijgsman O., Wilting S.M. et al. Focal aberrations indicate EYA2 and hsa-miR-375 as oncogene and tumor suppressor in cervical carcinogenesis. Genes Chromosomes Cancer 2013;52(1): 56–68. DOI: 10.1002/gcc.22006.
24. Zeng K., Zheng W., Mo X. et al. Dysregulated microRNAs involved in the progression of cervical neoplasm. Arch Gynecol Obstet 2015;292(4):905–13. DOI: 10.1007/s00404-015-3702-5.
25. Sheedy F.J. Turning 21: induction of miR-21 as a key switch in the inflammatory response. Front Immunol 2015;6:19. DOI: 10.3389/fimmu.2015.00019.
26. Колесников Е.Н., Максимов А.Ю., Кит О.И., Кутилин Д.С. Зависимость общей и безрецидивной выживаемости больных от молекулярно-генетического подтипа плоскоклеточного рака пищевода. Вопросы онкологии 2019;65(5):691–700. [Kolesnikov E.N., Maksimov A.Yu., Kit O.I., Kutilin D.S. Dependence of overall and relapse-free patients survival from molecular genetic subtype of esophageal squamous cell cancer. Voprosy onkologii = Problems in Oncology 2019;65(5):691–700. (In Russ.)].
27. Gan L., Meng J., Xu M. et al. Extracellular matrix protein 1 promotes cell metastasis and glucose metabolism by inducing integrin β4/FAK/SOX2/HIF-1α signaling pathway in gastric cancer. Oncogene 2018;37(6):744–55. DOI: 10.1038/onc.2017.363.
28. Martin C.M., Astbury K., McEvoy L. et al. Gene expression profiling in cervical cancer: identification of novel markers for disease diagnosis and therapy. Methods Mol Biol 2009;511:333–59. DOI: 10.1007/978-1-59745-447-6_15.
29. Zhou X.L., Wang M. Expression levels of survivin, Bcl-2, and KAI1 proteins in cervical cancer and their correlation with metastasis. Genet Mol Res 2015;14(4):17059–67. DOI: 10.4238/2015.December.16.6.
30. He Y., Luo Y., Zhang D. et al. PGK1-mediated cancer progression and drug resistance. Am J Cancer Res 2019;9(11):2280–302.
31. Li H., Shen H., Xu Q. et al. Expression of Pin1 and Ki67 in cervical cancer and their significance. J Huazhong Univ Sci Technolog Med Sci 2006;26(1):120–2. DOI: 10.1007/BF02828056.
32. Xu Z., Zhou Y., Shi F. et al. Investigation of differentially-expressed microRNAs and genes in cervical cancer using an integrated bioinformatics analysis. Oncol Lett 2017;13(4):2784–90. DOI: 10.3892/ol.2017.5766.
Review
For citations:
Dimitriadi T.A., Burtsev D.V., Dzhenkova E.A., Kutilin D.S. Differential expression of microRNAs and their target genes in cervical intraepithelial neoplasias of varying severity. Advances in Molecular Oncology. 2020;7(2):47-61. (In Russ.) https://doi.org/10.17650/2313-805X-2020-7-2-47-61