Preview

Advances in Molecular Oncology

Advanced search

Role of microRNAs in neuroendocrine neoplasms of the stomach

https://doi.org/10.17650/2313-805X-2020-7-3-19-26

Abstract

Neuroendocrine neoplasms (NENs) are a heterogeneous group of rare epithelial tumors that arise from cells with a neuroendocrine phenotype. NENs are found in the gastrointestinal tract and pancreas – 60 % of all localities. The incidence of gastric NENs is about 9 % of all neuroendocrine tumors of the gastrointestinal tract and 0.3 % of all stomach tumors. Stomach neuroendocrine tumors (NETs) are classified into three clinico-pathological types, based on etiology, pathogenesis and morphology. There are also separate neuroendocrine cancers: small- and large-cell. The prognosis and approach to treatment of various types of gastric NENs differs significantly. Modern methods of instrumental diagnostics, immunohistochemical methods of morphological research, along with light microscopy, do not always allow us to accurately assess the malignant potential of a tumor and individualize the treatment process. One of the promising directions in the study of NETs is to determine the molecular mechanism underlying their development, in particular the role of microRNAs. This direction can open a new vector of understanding the pathogenesis, determining the prognosis of the disease, as well as finding new application points for the drug treatment of NETs. MicroRNAs are a class of short non-coding RNA molecules (18–25 nucleotides). MicroRNAs can be involved in the regulation of all major cellular processes, including proliferation and differentiation, metabolism, signaling pathways, and apoptosis. A study of microRNA expression in tissues revealed tumor-specific microRNAs. In contrast to a number of other malignant tumors, microRNA expression in patients diagnosed with NENs is poorly understood. MicroRNA-222 and microRNA-202 are among the few microRNAs that have been demonstrated in the NETs of the stomach.

About the Authors

I. N. Peregorodiev
N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation
24 Kashirskoe Shosse, Moscow 115478, Russia


S. V. Vinokurova
N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation
24 Kashirskoe Shosse, Moscow 115478, Russia


V. Yu. Bohyan
N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation
24 Kashirskoe Shosse, Moscow 115478, Russia


V. V. Delektorskaya
N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation
24 Kashirskoe Shosse, Moscow 115478, Russia


O. A. Malikhova
N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation
24 Kashirskoe Shosse, Moscow 115478, Russia


V. A. Gorbunova
N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation
24 Kashirskoe Shosse, Moscow 115478, Russia


B. I. Sakibov
N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation
24 Kashirskoe Shosse, Moscow 115478, Russia


D. S. Elkin
N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation
24 Kashirskoe Shosse, Moscow 115478, Russia


I. S. Stilidi
N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation
24 Kashirskoe Shosse, Moscow 115478, Russia


References

1. Frilling A., Modlin I.M., Kidd M. et al. Recommendations for management of patients with neuroendocrine liver metastases. Lancet Oncol 2014;15(1):e8–21. DOI:10.1016/S1470-2045(13)70362-0.

2. Okita N.T., Kato K., Takahari D. et al. Neuroendocrine tumors of the stomach: chemotherapy with cisplatin plus irinotecan is effective for gastric poorlydifferentiated neuroendocrine carcinoma.a Gastric Cancer 2011;14(2):161–5. DOI: 10.1007/s10120-011-0025-5.

3. Lee R.C., Feinbaum R.L., Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993;75:843–54. DOI: 10.1016/0092-8674(93)90529-y.

4. http://www.mirbase.org/.

5. Valencia-Sanchez M.A., Liu J., Hannon G.J., Parker R. Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev 2006;20(5):515–24. DOI: 10.1101/gad.1399806.

6. Bartel D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004;116(2):281–97. DOI: 10.1016/s0092-8674(04)00045-5.

7. Friedman R.C., Kai-How Farh K., Burge C.B., Bartel D.P. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 2009;19(1):92–105. DOI: 10.1101/gr.082701.108.

8. Lewis B.P., Burge C.B., Bartel D.P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005;120:15–20. DOI: 10.1016/j.cell.2004.12.035.

9. Harfe B.D. MicroRNAs in vertebrate development. Curr Opin Genet Dev 2005; 15:410–5. DOI: 10.1016/j.gde.2005.06.012.

10. Croce C.M. Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 2009;10:704–14. DOI: 10.1038/nrg2634.

11. Zhang B., Pan X., Cobb G.P. et al. microRNAs as oncogenes and tumor suppressors. Dev Biol 2007;302:1–12. DOI: 10.1016/j.ydbio.2006.08.028.

12. Calin G.A., Sevignani C., Dumitru C.D. et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 2004;101:2999–3004. DOI: 10.1073/pnas.0307323101.

13. Calin G.A., Dumitru C.D., Shimizu M. et al. Frequent deletions and downregulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 2002;99(24):15524–9. DOI: 10.1073/pnas.242606799.

14. Cimmino A., Calin G.A., Fabbri M. et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 2005;102(39):13944–9. DOI: 10.1073/pnas.0506654102.

15. Lu J., Getz G., Miska E.A. et al. MicroRNA expression profiles classify human cancers. Nature 2005;435(7043):834–8. DOI: 10.1038/nature03702.

16. Hiyoshi Y., Watanabe M. MicroRNAs in gastrointestinal cancer: a novel biomarker and its clinical application. J Cancer Metastasis Treat 2015;1:144–55.

17. Di Leva G., Croce C.M. miRNA profiling of cancer. Curr Opin Genet Dev 2013; 23:3–11. DOI: 10.1016/j.gde.2013.01.004.

18. Chen X., Ba Y., Ma L. et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 2008;18(10):997–1006. DOI: 10.1038/cr.2008.282.

19. Basak I., Patil K.S., Alves G. et al. MicroRNAs as neuroregulators, biomarkers and therapeutic agents in neurodegenerative diseases. Cell Mol Life Sci 2016;73(4):811–27. DOI: 10.1007/s00018-015-2093-x.

20. Kosaka N., Iguchi H., Ochiya T. Circulating 23 microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis. Cancer Sci 2010;101:2087–92. DOI: 10.1111/j.1349-7006.2010.01650.x.

21. Vazquez-Martinez R., Gasman S. The regulated secretory pathway in neuroendocrine cells. Front Endocrinol (Lausanne) 2014;5:48. DOI: 10.3389/fendo.2014.00048.

22. Thorns C., Schurmann C., Gebauer N. et al. Global microRNA profiling of pancreatic neuroendocrine neoplasias. Anticancer Res 2014;34(5):2249–54.

23. Singh R., Ramasubramanian B., Kanji S. et al. Circulating microRNAs in cancer: hope or hype? Cancer Lett 2016;381(1): 113–21. DOI: 10.1016/j.canlet.2016.07.002.

24. Mittelbrunn M., Gutiérrez-Vázquez C., Villarroya-Beltri C. et al. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat Commun 2011;2:282. DOI: 10.1038/ncomms1285.

25. Sperveslage J., Hoffmeister M., Henopp T. et al. Establishment of robust controls for the normalization of miRNA expression in neuroendocrine tumors of the ileum and pancreas. Endocrine 2014;46(2):226–30. DOI: 10.1007/s12020-014-0202-5.

26. Roldo C., Missiaglia E., Hagan J.P. et al. MicroRNA expression abnormalities in pancreatic endocrine and acinar tumors are associated with distinctive pathologic features and clinical behavior. J Clin Oncol 2006;24:4677–84. DOI: 10.1200/JCO.2005.05.5194.

27. Li S.C., Essaghir A., Martijn C. et al. Global microRNA profiling of welldifferentiated small intestinal neuroendocrine tumors. Mod Pathol 2013;26:685–96. DOI: 10.1038/modpathol.2012.216.

28. Liang L., Zheng X., Hu M. et al. MiRNA-221/222 in thyroid cancer: a meta-analysis. Clin Chim Acta 2018;484:284–92. DOI: 10.1016/j.cca.2018.06.012.

29. Hetta H.F., Zahran A.M., El-Mahdy R.I. et al. Assessment of circulating miRNA-17 and miRNA-222 expression profiles as non-invasive biomarkers in egyptian patients with non-small-cell lung. Cancer Asian Pac J Cancer Prev 2019;20(6):1927–33. DOI: 10.31557/APJCP.2019.20.6.1927.

30. Li Y., Di C., Li W. et al. Oncomirs miRNA-221/222 and tumor suppressors miRNA-199a/195 are crucial miRNAs in liver cancer: a systematic analysis. Dig Dis Sci 2016;61(8):2315–27. DOI: 10.1007/s10620-016-4156-8.

31. Ke S.B., Qiu H., Chen J.M. et al. MicroRNA-202-5p functions as a tumor suppressor in colorectal carcinoma by directly targeting SMARCC1. Gene 2018;676:329–35. DOI: 10.1016/j.gene.2018.08.064.

32. Lloyd K.A., Moore A.R., Parsons B.N. et al. Gastrin-induced miR-222 promotes gastric tumor development by suppressing p27KIP1. Oncotarget 2016;7(29):45462–78. DOI: 10.18632/oncotarget.9990.

33. Dockray G., Dimaline R., Varro A. Gastrin: old hormone, new functions. Pflugers Arch 2005;449:344–55. DOI: 10.1007/s00424-004-1347-5.

34. Le Sage C., Nagel R., Egan D.A. et al. Regulation of the p27 (KIP1) tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation. EMBO J 2007;26:3699–708. DOI: 10.1038/sj.emboj.7601790.

35. Byun S.W., Chang Y.J., Chung I.S. et al. Helicobacter pylori decreases p27 expression through the delta opioid receptor-mediated inhibition of histone acetylation within the p27 promoter. Cancer Lett 2012;326:96–104. DOI: 10.1016/j.canlet.2012.07.032.

36. Shu-Ping L., Xue-Jun C., Ai-Hua S. et al. CagA + H. pylori induces Akt1 phosphorylation and inhibits transcription of p21 WAF1/CIP1 and p27KIP1 via PI3K/ Akt1 pathway. Biomed Environ Sci 2010;23:273–8. DOI: 10.1016/S0895-3988(10)60063-3.

37. Wen S., So Y., Singh K. et al. Promotion of cytoplasmic mislocalization of p27 by Helicobacter pylori in gastric cancer. Oncogene 2012;31:1771–80. DOI: 10.1038/onc.2011.362.

38. Eguchi H., Herschenhous N., Kuzushita N., Moss S.F. Helicobacter pylori increases proteasome-mediated degradation of p27 (KIP1) in gastric epithelial cells. Cancer Res 2003;63(15):4739–46.

39. Kuzushita N., Rogers A.B., Monti N.A. et al. p27KIP1 deficiency confers susceptibility to gastric carcinogenesis in Helicobacter pylori-infected mice. Gastroenterology 2005;129:1544–56. DOI: 10.1053/j.gastro.2005.07.056.

40. Yu J., Leung W., Ng E. et al. Effect of Helicobacter pylori eradication on expression of cyclin D2 and p27 in gastric intestinal metaplasia. Aliment Pharmacol Ther 2001;15:1505–11. DOI: 10.1046/j.1365-2036.2001.01038.x.

41. Peek R.M. Jr, Wirth H.P., Moss S.F. et al. Helicobacter pylori alters gastric epithelial cell cycle events and gastrin secretion in Mongolian gerbils. Gastroenterology 2000;118:48–59. DOI: 10.1016/s0016-5085(00)70413-6.

42. Eguchi H., Carpentier S., Kim S. et al. p27KIP1 regulates the apoptotic response of gastric epithelial cells to Helicobacter pylori. Gut 2004;53:797–804. DOI: 10.1136/gut.2003.032144.

43. Shirin H., Sordillo E.M., Kolevska T.K. et al. Chronic Helicobacter pylori infection induces an apoptosis-resistant phenotype associated with decreased expression of p27KIP1. Infect Immun 2000;68:5321–8. DOI: 10.1128/iai.68.9.5321-5328.2000.

44. Sundaresan S., Kang A.J., Hayes M.M. et al. Deletion of Men1 and somatostatin induces hypergastrinemia and gastric carcinoids. Gut 2017;66(6):1012–21. DOI: 10.1136/gutjnl-2015-310928.

45. Wander S.A., Zhao D., Slingerland J.M. p27: a barometer of signaling deregulation and potential predictor of response to targeted therapies. Clin Cancer Res 2011;17:12–8. DOI: 10.1158/1078-0432.CCR-10-0752.

46. Dou D., Shi Y.F., Liu Q. et al. Hsa-miR- 202-3p, up-regulated in type 1 gastric neuroendocrine neoplasms, may target DUSP1. World J Gastroenterol 2018;24(5):573–82. DOI: 10.3748/wjg.v24.i5.573.

47. Theodosiou A., Ashworth A. MAP kinase phosphatases. Genome Biol 2002;3(7):REVIEWS3009. DOI: 10.1186/gb-2002-3-7-reviews3009.

48. Owens D.M., Keyse S.M. Differential regulation of MAP kinase signalling by dual-specificity protein phosphatases. Oncogene 2007;26:3203–13. DOI: 10.1038/sj.onc.1210412.

49. Shen J., Zhang Y., Yuc H. et al. Role of DUSP1/MKP1 in tumorigenesis, tumor progression and therapy. Cancer Med 2016;5:2061–8. DOI: 10.1002/cam4.772.


Review

For citations:


Peregorodiev I.N., Vinokurova S.V., Bohyan V.Yu., Delektorskaya V.V., Malikhova O.A., Gorbunova V.A., Sakibov B.I., Elkin D.S., Stilidi I.S. Role of microRNAs in neuroendocrine neoplasms of the stomach. Advances in Molecular Oncology. 2020;7(3):19–26. (In Russ.) https://doi.org/10.17650/2313-805X-2020-7-3-19-26

Views: 760


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2313-805X (Print)
ISSN 2413-3787 (Online)