Preview

Успехи молекулярной онкологии

Расширенный поиск

Молекулярный портрет рака желудка, ассоциированного с вирусом Эпштейна–Барр

https://doi.org/10.17650/2313-805X-2020-7-3-27-36

Полный текст:

Аннотация

Рак желудка, ассоциированный с вирусом Эпштейна–Барр (ВЭБ), – особая форма онкологического заболевания, возникающая в результате клональной пролиферации ВЭБ-инфицированных эпителиоцитов слизистой оболочки желудка. Данный подтип опухолей имеет уникальные генетические и эпигенетические особенности, определяющие его характерный фенотип. Выявление широкого спектра молекулярных особенностей ВЭБ-ассоциированного рака желудка позволяет описать потенциальные мишени, перспективные для лекарственной терапии данного подтипа опухолей. В обзоре представлены современные данные об эпидемиологии и патогенезе ВЭБ-ассоциированного рака желудка, описаны его уникальные патоморфологические и молекулярные особенности. Особое внимание уделено прогностической роли ВЭБ-инфекции и лекарственной терапии, потенциально применимой для лечения ВЭБ-положительного рака желудка.

Об авторах

Е. О. Игнатова
ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н. Н. Блохина» Минздрава России
Россия
Россия, 115478 Москва, Каширское шоссе, 24


Д. А. Серяк
ФГАОУ ВО Первый Московский государственный медицинский университет им. И. М. Сеченова (Сеченовский Университет) Минздрава России
Россия
Россия, 119146 Москва, Большая Пироговская ул., 19, стр. 1


М. Ю. Федянин
ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н. Н. Блохина» Минздрава России
Россия
Россия, 115478 Москва, Каширское шоссе, 24


А. А. Трякин
ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н. Н. Блохина» Минздрава России
Россия
Россия, 115478 Москва, Каширское шоссе, 24


И. А. Покатаев
ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н. Н. Блохина» Минздрава России
Россия
Россия, 115478 Москва, Каширское шоссе, 24


С. Ф. Меньшикова
Отделение противоопухолевой лекарственной терапии АО «К 31 Сити»
Россия
Россия, 123112 Москва, Тестовская ул., 10


Ю. В. Вахабова
Московский научно-исследовательский онкологический институт им. П. А. Герцена – филиал ФГБУ «Национальный медицинский исследовательский центр радиологии» Минздрава России
Россия
Россия, 125284 Москва, 2‑й Боткинский проезд, 3


М. С. Карбышев
ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н. И. Пирогова» Минздрава России
Россия
Россия, 117997 Москва, ул. Островитянова, 1


К. В. Смирнова
ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н. Н. Блохина» Минздрава России; ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н. И. Пирогова» Минздрава России
Россия

Ксения Валерьевна Смирнова

Россия, 115478 Москва, Каширское шоссе, 24

Россия, 117997 Москва, ул. Островитянова, 1



С. А. Тюляндин
ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н. Н. Блохина» Минздрава России
Россия

Россия, 115478 Москва, Каширское шоссе, 24



Список литературы

1. Ferlay J., Soerjomataram I., Dikshit R. et al. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015;136(5):E359–86. DOI: 10.1002/ijc.29210.

2. Burke A.P., Yen T.S., Shekitka K.M., Sobin L.H. Lymphoepithelial carcinoma of the stomach with Epstein–Barr virus demonstrated by polymerase chain reaction. Mod Pathol 1990;3(3):377–80.

3. Shibata D., Weiss L.M. Epstein–Barr virus-associated gastric adenocarcinoma. Am J Pathol 1992;140(4):769–74.

4. Hoshikawa Y., Satoh Y., Murakami M. et al. Evidence of lytic infection of Epstein–Barr virus (EBV) in EBVpositive gastric carcinoma. J Med Virol 2002;66(3):351–9. DOI: 10.1002/jmv.2152.

5. Imai S., Koizumi S., Sugiura M. et al. Gastric carcinoma: monoclonal epithelial malignant cells expressing Epstein–Barr virus latent infection protein. Proc Natl Acad Sci USA 1994;91(19):9131–5. DOI: 10.1073/pnas.91.19.9131.

6. Fukayama M., Hayashi Y., Iwasaki Y. et al. Epstein–Barr virus-associated gastric carcinoma and Epstein–Barr virus infection of the stomach. Lab Invest 1994;71(1):73–81.

7. Ott G., Kirchner T., Muller-Hermelink H.K. Monoclonal Epstein–Barr virus genomes but lack of EBV-related protein expression in different types of gastric carcinoma. Histopathology 1994;25(4):323–9. DOI: 10.1111/j.1365-2559.1994.tb01350.x.

8. Naseem M., Barzi A., Brezden-Masley C. et al. Outlooks on Epstein–Barr virus associated gastric cancer. Cancer Treat Rev 2018;66:15–22. DOI: 10.1016/j.ctrv.2018.03.006.

9. The Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 2014;513(7517):202–9. DOI: 10.1038/nature13480.

10. Hinoue T., Bass A.J., Laird P.W. Comparative molecular analysis of gastrointestinal comparative molecular analysis of gastrointestinal adenocarcinomas. Cancer Cell 2018;33(4):721–35. DOI: 10.1016/j.ccell.2018.03.010.

11. Akiba S., Koriyama C., Herrera- Goepfert R., Eizuru Y. Epstein–Barr virus associated gastric carcinoma: epidemiological and clinicopathological features. Cancer Sci 2008;99(2):195–201. DOI: 10.1111/j.1349-7006.2007.00674.x.

12. Lee J.H., Kim S.H., Han S.H. et al. Clinicopathological and molecular characteristics of Epstein–Barr virus associated gastric carcinoma: a metaanalysis. J Gastroenterol Hepatol 2009;24(3):354–65. DOI: 10.1111/j.1440-1746.2009.05775.x.

13. Abe H., Maeda D., Hino R., Otake Y. ARID1A expression loss in gastric cancer: pathway-dependent roles with and without Epstein–Barr virus infection and microsatellite instability. Virchows Arch 2012;461(4): 367–77. DOI: 10.1007/s00428-012-1303-2.

14. Koh J., Ock C.Y., Kim J.W. et al. Clinicopathologic implications of immune classification by PD-L1 expression and CD8- positive tumor-infiltrating lymphocytes in stage II and III gastric cancer patients. Oncotarget 2017;8(16):26356–67. DOI: 10.18632/oncotarget.15465.

15. Derks S., Liao X., Chiaravalli A.M. et al. Abundant PD-L1 expression in Epstein– Barr virus-infected gastric cancers. Oncotarget 2016;7(22):32925–32. DOI: 10.18632/oncotarget.9076.

16. Chesnokova L.S., Hutt-Fletcher L.M. Epstein–Barr virus infection mechanisms. Chin J Cancer 2014;33(11):545–8. DOI: 10.5732/cjc.014.10168.

17. Abe H., Kaneda A., Fukayama M. Epstein–Barr virus-associated gastric carcinoma: use of host cell machineries and somatic gene mutations. Pathobiology 2015;82(5):212–23. DOI: 10.1159/000434683.

18. Frappier L. Contributions of Epstein–Barr nuclear antigen 1 (EBNA1) to cell immortalization and survival. Viruses 2012;4(9): 1537–47. DOI: 10.3390/v4091537.

19. Chen C., Li D., Guo N. Regulation of cellular and viral protein expression by the Epstein–Barr virus transcriptional regulator Zta: implications for therapy of EBV associated tumors. Cancer Biol Ther 2009;8(11):987–95. DOI: 10.4161/cbt.8.11.8369.

20. Kang G.H., Lee S., Kim W.H. et al. Demonstrates frequent aberrant methylation of multiple genes and constitutes CpG island methylator phenotype-positive gastric carcinoma. Am J Pathol 2002;160(3):787–94. DOI: 10.1016/S0002-9440(10)64901-2.

21. Hino R., Uozaki H., Murakami N. et al. Activation of DNA methyltransferase 1 by EBV latent membrane protein 2A leads to promoter hypermethylation of PTEN gene in gastric carcinoma. Cancer Res 2009;69(7):2766–74. DOI: 10.1158/0008-5472.CAN-08-3070.

22. Shinozaki-Ushiku A., Kunita A., Fukayama M. Update on Epstein–Barr virus and gastric cancer. Int J Oncol 2015;46(4):1421–34. DOI: 10.3892/ijo.2015.2856.

23. Shinozaki-Ushiku A., Kunita A., Isogai M. et al. Profiling of virus-encoded microRNAs in Epstein–Barr virusassociated gastric carcinoma and their roles in gastric carcinogenesis. J Virol 2015;89(10):5581–91. DOI: 10.1128/JVI.03639-14.

24. Gu J., Qian H., Shen L. et al. Gastric cancer exosomes trigger differentiation of umbilical cord derived mesenchymal stem cells to carcinoma-associated fibroblasts through TGF-β/Smad pathway. PLoS One 2012;7(12):e52465. DOI: 10.1371/journal.pone.0052465.

25. Samuels Y., Waldman T. Oncogenic mutations of PIK3CA in human cancers. Curr Top Microbiol Immunol 2010;347: 21–41. DOI: 10.1007/82_2010_68.

26. Yuen J.W., Chung G.T., Lun S.W. et al. Epigenetic inactivation of inositol polyphosphate 4-phosphatase B (INPP4B), a regulator of PI3K/AKT signaling pathway in EBV-associated nasopharyngeal carcinoma. PLoS One 2014;9(8):e105163. DOI: 10.1371/journal.pone.0105163.

27. Ohtsu A., Ajani J.A., Bai Y.X. et al. Everolimus for previously treated advanced gastric cancer: results of the randomized, double-blind, phase III GRANITE-1 study. J Clin Oncol 2013;31(31):3935–43. DOI: 10.1200/JCO.2012.48.3552.

28. Al-Batran S.E., Riera-Knorrenschild J., Pauligk C. et al. A randomized, doubleblind, multicenter phase III study evaluating paclitaxel with and without RAD001 in patients with gastric cancer who have progressed after therapy with a fluoropyrimidine/platinum-containing regimen (RADPAC). J Clin Oncol 2017;35(4_suppl):4.

29. Ramanathan R.K., McDonough S.L., Kennecke H.F. et al. Phase 2 study of MK-2206, an allosteric inhibitor of AKT, as second-line therapy for advanced gastric and gastroesophageal junction cancer: a SWOG cooperative group trial (S1005). Cancer 2015;121(13):2193–7. DOI: 10.1002/cncr.29363.

30. Wang K., Law S., Wang K. et al. Exome sequencing identifies frequent mutation of ARID1A in molecular subtypes of gastric cancer Exome sequencing identifies frequent mutation of ARID1A in molecular subtypes of gastric cancer. Nat Genet 2011;43(12):1219–23. DOI: 10.1038/ng.982.

31. Day L., Chau C.M., Nebozhyn M. et al. Chromatin profiling of Epstein–Barr virus latency control region. J Virol 2007;81(12): 6389–401. DOI: 10.1128/JVI.02172-06.

32. Grossmann V., Tiacci E., Holmes A.B. et al. Whole-exome sequencing identifies somatic mutations of BCOR in acute myeloid leukemia with normal karyotype. Blood 2011;118(23):6153–63. DOI: 10.1182/blood-2011-07-365320.

33. Yu H., Lee H., Herrmann A. et al. Revisiting STAT3 signaling in cancer: new and unexpected biological functions. Nat Rev Cancer 2014;14(11):736–46. DOI: 10.1038/nrc3818.

34. Kim D.Y., Cha S.T., Ahn D.H. et al. STAT3 expression in gastric cancer indicates a poor prognosis. J Gastroenterol Hepatol 2009;24(4):646–51. DOI: 10.1111/j.1440-1746.2008.05671.x.

35. Han J., Zhang K., Chen X. et al. Expression of seven gastric cancerassociated genes and its relevance for Wnt, NF-κB and Stat3 signaling. APMIS 2007;115(12):1331–43. DOI: 10.1111/j.1600-0643.2007.00695.x.

36. Sonbol M.B., Bekaii-Saab T. A clinical trial protocol paper discussing the BRIGHTER study. Future Oncol 2018;14(10):901–6. DOI: 10.2217/fon-2017-0406.

37. Geddert H., Zur Hausen A., Gabbert H.E., Sarbia M. EBV-infection in cardiac and non-cardiac gastric adenocarcinomas is associated with promoter methylation of p16, p14 and APC, but not hMLH1. Anal Cell Pathol (Amst) 2010;33(3):143–9. DOI: 10.3233/ACP-CLO-2010-0540.

38. Chang M., Uozaki H., Chong J. et al. Human cancer biology CpG island methylation status in gastric carcinoma with and without infection of Epstein– Barr virus. Clin Cancer Res 2006;12(10):2995–3002. DOI: 10.1158/1078-0432.CCR-05-1601.

39. dos Jacome A.A.A., de Lima E.M., Kazzi A.I. et al. Epstein–Barr viruspositive gastric cancer: a distinct molecular subtype of the disease? Rev Soc Bras Med Trop 2016;49(2):150–7. DOI: 10.1590/0037-8682-0270-2015.

40. Dong H., Strome S., Salomao D. et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 2002;8(8):793–800. DOI: 10.1038/nm730.

41. Pereira M.A., Ramos M.F., Faraj S.F. et al. Clinicopathological and prognostic features of Epstein–Barr virus infection, microsatellite instability, and PD-L1 expression in gastric cancer. J Surg Oncol 2018;117:829–39. DOI: 10.1002/jso.25022 .

42. Chen B.J., Chapuy B., Ouyang J. et al. PD-L1 expression is characteristic of a subset of aggressive B-cell lymphomas and virus-associated malignancies. Clin Cancer Res 2013;19(13):3462–73. DOI: 10.1158/1078-0432.CCR-13-0855.

43. Green M.R., Rodig S., Juszczynski P. et al. Constitutive AP-1 activity and EBV infection induce PD-L1 in Hodgkin lymphomas and posttransplant lymphoproliferative disorders: implications for targeted therapy. Clin Cancer Res 2012;18(6): 1611–8. DOI: 10.1158/1078-0432.

44. Chen X.Z., Chen H., Castro F.A. et al. Epstein–Barr virus infection and gastric cancer: a systematic review. Medicine (Baltimore) 2015;94(20):e792. DOI: 10.1097/MD.0000000000000792.

45. Tokunaga M., Land C.E., Uemura Y. et al. Epstein–Barr virus in gastric carcinoma. Am J Pathol 1993;143(5):1250–4.

46. Shukla S.K., Prasad K.N., Tripathi A. et al. Epstein–Barr virus DNA load and its association with Helicobacter pylori infection in gastroduodenal diseases. Braz J Infect Dis 2011;15(6):583–90.

47. Martinez-Lуpez J.L., Torres J., Camorlinga-Ponce M. et al. Evidence of Epstein–Barr virus association with gastric cancer and non-atrophic gastritis. Viruses 2014;6(1):301–18. DOI: 10.3390/v6010301.

48. Lee M.A., Hong Y.S., Kang J.H. et al. Detection of Epstein–Barr virus by PCR and expression of LMP1, p53, CD44 in gastric cancer. Korean J Intern Med 2004;19(1):43–7. DOI: 10.3904/kjim.2004.19.1.43.

49. Oda K., Koda K., Takiguchi N. et al. Original article detection of Epstein–Barr virusin gastric carcinoma cells and surrounding lymphocytes. Gastric Cancer 2003;6(3): 173–8. DOI: 10.1007/s10120-003-0247-2.

50. Shukla S., Prasad K., Tripathi A. et al. Expression profile of latent and lytic transcripts of Epstein–Barr virus in patients with gastroduodenal diseases: a study from northern India. J Med Virol 2012;84(8): 1289–97. DOI: 10.1002/jmv.23322.

51. Rowlands D.C., Ito M., Mangham D.C. et al. Epstein–Barr virus and carcinomas: rare association of the virus with gastric adenocarcinomas. Br J Cancer 2016; 114(12):e15. DOI: 10.1038/bjc.2016.156.

52. Kim Y., Shin A., Gwack J. et al. Epstein– Barr virus antibody level and gastric cancer risk in Korea: a nested case-control study. Br J Cancer 2009;101(3):526–9. DOI: 10.1038/sj.bjc.6605146.

53. Koshiol J., Qiao Y.L., Dawsey S.M. et al. Epstein–Barr virus serology and gastric cancer incidence and survival. Br J Cancer 2007;97(11):1567–9. DOI: 10.1038/sj.bjc.6604063.

54. Levine P.H., Stemmermann G., Lennelte E.T. et al. Elevated antibody titers to Epstein–Barr virus prior to the diagnosis of Epstein-Barr-virus-associated gastric adenocarcinoma. Int J Cancer 1995;60(5): 642–4. DOI: 10.1002/ijc.2910600513.

55. Shinkura R., Yamamoto N., Koriyama C. et al. Epstein–Barr virus-specific antibodies in Epstein–Barr virus-positive and -negative gastric carcinoma cases in Japan. J Med Virol 2000;60(4):411–6. DOI: 10.1002/(sici)1096-9071(200004)60:4<411::aid-jmv8>3.0.co;2-8.

56. Lo Y.M., Chan W.Y., Ng E.K. et al. Circulating Epstein–Barr virus DNA in the serum of patients with gastric carcinoma. Clin Cancer Res 2001;7(7):1856–9.

57. Shoda K., Ichikawa D., Fujita Y. et al. Clinical utility of circulating cell-free Epstein–Barr virus DNA in patients with gastric cancer. Oncotarget 2017;8(17):28796–804. DOI: 10.18632 /oncotarget.15675.

58. Sohn B.H., Hwang J.E., Jang H.J. et al. Clinical significance of four molecular subtypes of gastric cancer identified by the cancer genome atlas project. Clin Cancer Res 2017. DOI: 10.1158/1078-0432.CCR-16-2211.

59. Camargo M.C., Kim W.H., Chiaravalli A.M. et al. Improved survival of gastric cancer with tumour Epstein–Barr virus positivity: an international pooled analysis. Gut 2014;63(2):236–43. DOI: 10.1136/gutjnl-2013-304531.

60. Qing Y., Li Q., Ren T. et al. Upregulation of PD-L1 and APE1 is associated with tumorigenesis and poor prognosis of gastric cancer. Drug Des Devel Ther 2015;16(9):901–9. DOI: 10.2147/DDDT.S75152.

61. Muro K., Bang Y.J., Shankaran V. et al. Relationship between PD-L1 expression and clinical outcomes in patients (Pts) with advanced gastric cancer treated with the anti-PD-1 monoclonal antibody pembrolizumab (Pembro; MK-3475) in KEYNOTE-012. J Clin Oncol 2015;33(3_suppl):3.

62. Shitara K., Ozguroğlu M., Bang Y.J. et al. Pembrolizumab versus paclitaxel for previously treated, advanced gastric or gastro-oesophageal junction cancer (KEYNOTE-061): a randomised, openlabel, controlled, phase 3 trial. Lancet 2018;392(10142):123–33. DOI: 10.1016/S0140-6736(18)31257-1.

63. Tabernero J., Van Cutsem E., Bang Y.J. et al. Pembrolizumab with or without chemotherapy versus chemotherapy for advanced gastric or gastroesophageal junction (G/GEJ) adenocarcinoma: the phase III KEYNOTE-062 study. J Clin Oncol 2019:37(18). DOI: 10.1200/JCO.2019.37.18_suppl.LBA4007.

64. Bang Y.J., Cho J.Y., Kim Y.H. et al. Efficacy of sequential ipilimumab monotherapy versus best supportive care for unresectable locally advanced/ metastatic gastric or gastroesophageal junction cancer. Clin Cancer Res 2017;23(19):5671–8. DOI: 10.1158/1078-0432.CCR-17-0025.

65. Bang Y.J., Ruiz E.Y., van Cutsem E. Phase III, randomised trial of avelumab versus physician’s choice of chemotherapy as third-line treatment of patients with advanced gastric or gastro-oesophageal junction cancer: primary analysis of JAVELIn Gastric 300. Ann Oncol 2018;29(10):2052–60. DOI: 10.1093/annonc/mdy264.

66. Kim S.T., Cristescu R., Bass A.J. et al. Comprehensive molecular characterization of clinical responses to PD-1 inhibition in metastatic gastric cancer. Nat Med 2018;24(9):1449–588. DOI: 10.1038/s41591-018-0101-z.


Для цитирования:


Игнатова Е.О., Серяк Д.А., Федянин М.Ю., Трякин А.А., Покатаев И.А., Меньшикова С.Ф., Вахабова Ю.В., Карбышев М.С., Смирнова К.В., Тюляндин С.А. Молекулярный портрет рака желудка, ассоциированного с вирусом Эпштейна–Барр. Успехи молекулярной онкологии. 2020;7(3):27-36. https://doi.org/10.17650/2313-805X-2020-7-3-27-36

For citation:


Ignatova E.O., Seryak D.A., Fedyanin M.Yu., Tryakin A.A., Pokataev I.A., Menshikova S.F., Vakhabova Yu.V., Karbyshev M.S., Smirnova K.V., Tulyandin S.A. Molecular portrait of stomach cancer associated with the Epstein–Barr virus. Advances in Molecular Oncology. 2020;7(3):27-36. (In Russ.) https://doi.org/10.17650/2313-805X-2020-7-3-27-36

Просмотров: 171


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2313-805X (Print)
ISSN 2413-3787 (Online)