Перспектива использования жидкостной биопсии в диагностике и лечении опухолей невыявленной первичной локализации
https://doi.org/10.17650/2313-805X-2020-7-4-10-19
Аннотация
Введение. Поиск и использование новых молекулярных прогностических и предиктивных маркеров, выявляемых методом жидкостной биопсии, направлены на определение молекулярно-биологических особенностей опухолей невыявленной первичной локализации (ОНПЛ), что должно способствовать более активному внедрению персонализированного подхода в терапии злокачественных новообразований и улучшению результатов лечения. Обзор посвящен системному анализу достижений в научных и клинических исследованиях по данной тематике.
Материалы и методы. В целях оценки современного состояния проблемы были осуществлены поиск и анализ актуальных данных по научным базам PubMed, Medline, РИНЦ и др.
Результаты. Представлено научное обоснование использования в клинической практике жидкостной биопсии для совершенствования лечения пациентов с ОНПЛ. Приведены результаты применения современных подходов к анализу образцов жидкостной биопсии при ОНПЛ. В частности, рассмотрены особенности использования в анализе циркулирующей свободной ДНК, циркулирующей опухолевой ДНК, циркулирующих опухолевых клеток. Обсуждены современные возможности определения тканевой специфичности с использованием жидкостной биопсии при ОНПЛ. Определены перспективы развития жидкостной биопсии для совершенствования диагностики, оценки прогноза заболевания, выбора стратегии лечения ОНПЛ.
Заключение. Обзор литературы подтверждает, что современные методы молекулярного профилирования опухолевых клеток, полученных как при жидкостной биопсии, так и в результате биопсии ткани, внесут значимый вклад в определение тканевой специфичности, молекулярных характеристик ОНПЛ для персонализированного подхода в целях совершенствования стратегии и улучшения результатов лечения пациентов с ОНПЛ.
Об авторах
И. Б. КононенкоРоссия
115478 Москва, Каширское шоссе, 23
М. Г. Филиппова
Россия
Маргарита Геннадьевна Филиппова
115478 Москва, Каширское шоссе, 23
А. В. Снеговой
Россия
115478 Москва, Каширское шоссе, 23
С. Л. Гуторов
Россия
115478 Москва, Каширское шоссе, 23
Список литературы
1. Комаров И.Г., Комов Д.В. Метастазы злокачественных опухолей без выявленного первичного очага. Онкология. Справочник практического врача 2009; 750–57.
2. Pentheroudakis G., Briasoulis E., Pavlidis N. Cancer of Unknown Primary site: missing primary or missing biology? Oncologist 2007;12(4):418–25. DOI: 10.1634/theoncologist.12-4-418.
3. Pavlidis N., Pentheroudakis G. Cancer of unknown primary site: 20 questions to be answered. Ann Oncol 2010; 21(Suppl 7): vii303–7. DOI: 10.1093/annonc/mdq278.
4. Рак без выявленного первичного очага. Минимальные клинические рекомендации Европейского общества медицинской онкологии (ESMO). Редакторы русского перевода: С.А. Тюляндин, Д.А. Носов, Н.И. Переводчикова. М.: Издательская группа РОНЦ им. Н.Н. Блохина РАМН, 2010. 436 с.
5. Blaszyk H., Hartmann A., Bjornsson J. Cancer of unknown primary: clinicopathologic correlations. APMIS 2003;111:1089–94. DOI: 10.1111/j.1600-0463.2003.apm1111203.x.
6. Hillen H.F.P. Unknown primary tumours. Postgr Med J 2000;76:690–3. DOI: 10.1136/pmj.76.901.690.
7. Siegel R., Naishadham D., Ahmedin J. Cancer statistics, 2012. CA Cancer J Clin 2012;62(1):10–29. DOI: 10.3322/caac.20138.
8. Thiele J.A., Bethel K., Králíčková M. et al. Circulating tumor cells: fluid surrogates of solid tumors. Ann Rev Pathol Mech Dis 2017;12:419–47. DOI: 10.1146/annurev-pathol-052016-100256.
9. Gerlinger M., Rowan A.J., Horswell S. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 2012;366:883–92. DOI: 10.1056/NEJMoa1113205.
10. Anderson G.G., Weiss L.M. Determining tissue of origin for metastatic cancers: meta-analysis and literature review of immunohistochemistry performance. Appl Immunohistochem Mol Morphol 2010;18:3–8. DOI: 10.1097/PAI.0b013e3181a75e6d.
11. Alix-Panabières C., Schwarzenbach H., Pantel K. Circulating tumor cells and circulating tumor DNA. Ann Rev Med 2012;63:199–215. DOI: 10.1146/annurev-med-062310-094219.
12. Best M.G., Sol N., Kooi I. et al. RNA-Seq of tumor-educated platelets enables blood-based pancancer, multiclass, and molecular pathway cancer diagnostics. Cancer Cell 2015;28:666–76. DOI: 10.1016/j.ccell.2015.09.018.
13. Malapelle U., Sirera R., Jantus-Lewintre E. et al. Profile of the Roche cobas® EGFR mutation test v2 for nonsmall cell lung cancer. Expert Rev Mol Diagn 2017;17:209–15. DOI: 10.1080/14737159.2017.1288568.
14. Bardelli A., Pantel K. Liquid biopsies, what we do not know (yet). Cancer Cell 2017;31:172–9. DOI: 10.1016/j.ccell.2017.01.002.
15. Wan J.C.M., Garcia-Corbacho J., Mouliere F. et al. Liquid biopsies come of age: Towards implementation of circulating tumour DNA. Nat Rev Cancer 2017;17: 223–38. DOI: 10.1038/nrc.2017.7.
16. Kato S., Krishnamurthy N., Banks K.C. et al. Utility of genomic analysis in circulating tumor DNA from patients with carcinoma of unknown primary. Cancer Res 2017;77:4238–46. DOI: 10.1158/0008-5472.CAN-17-0628.
17. Martincorena I., Roshan A., Gerstung M. et al. High burden and pervasive positive selection of somatic mutations in normal human skin. Science 2015;348:880–6. DOI: 10.1126/science.aaa6806.
18. Feinberg A.P., Ohlsson R., Henikoff S. The epigenetic progenitor origin of human cancer. Nat Rev Genet 2006;7:21–33. DOI: 10.1038/nrg1748.
19. Moran S., Martínez-Cardús A., Sayols S. et al. Epigenetic profiling to classify cancer of unknown primary: a multicentre, retro-spective analysis. Lancet Oncol 2016;17:1386–95. DOI: 10.1016/S1470-2045(16)30297-2.
20. Warton K., Mahon K.L., Samimi G. Methylated circulating tumor DNA in blood: power in cancer prognosis and response. En docr Relat Cancer 2016;23(3):R157–71. DOI: 10.1530/ERC-15-0369.
21. Meng S., Tripathy D., Frenkel E.P. et al. Circulating tumor cells in patients with breast cancer dormancy. Clin Cancer Res 2004;10:8152–62. DOI: 10.1158/1078-0432.CCR-04-1110.
22. Bockhorn M., Roberge S., Sousa C. et al. Differential gene expression in metastasizing cells shed from kidney tumors. Cancer Res 2004;64:2469–73. DOI: 10.1158/0008-5472.can-03-0256.
23. Williamson S.C., Metcalf R.L., Trapani F. et al. Vasculogenic mimicry in small cell lung cancer. Nat Commun 2016;7:13322. DOI: 10.1038/ncomms13322.
24. Kwon M.C., Proost N., Song J.Y. et al. Paracrine signaling between tumor subclones of mouse SCLC: a critical role of ETS transcription factor Pea3 in facilitating metastasis. Genes Dev 2015;29(15):1587–92. DOI: 10.1101/gad.262998.115.
25. Allard W.J., Matera J., Miller M.C. et al. Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin Cancer Res 2004;10:6897–904. DOI: 10.1158/1078-0432.CCR-04-0378.
26. Pantel K., Alix-Panabières C. Liquid biopsy in 2016: circulating tumour cells and cell-free DNA in gastrointestinal cancer. Nat Rev Gastroenterol Hepatol 2017;14:73–74. DOI: 10.1038/nrgastro.2016.198.
27. Кайгородова Е.В. Циркулирующие опухолевые клетки: клиническое значение при раке молочной железы (обзор литературы). Вестник РАМН 2017;72(6):450–7.Russ.)]. DOI: 10.15690/vramn833.
28. Murtaza M., Dawson S.J., Tsui D.W. et al. Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature 2013;497:108–12. DOI: 10.1038/nature12065.
29. Komine K., Inoue M., Otsuka K. et al. Utility of measuring circulating tumor cell counts to assess the efficacy of treatment for carcinomas of unknown primary origin. Anticancer Res 2014;34(6);3165–8.
30. Pentheroudakis G. CUP: looking for a missing primary site and its biology. Ann Oncol 2012;23(suppl 10):x278–81. DOI: 10.1093/annonc/mds318.
31. Eric P.K., Arturo B.R., Yao S. et al. The RareCyte® platform for next‐ generation analysis of circulating tumor cells. Cytometry A 2018;93(12):1220–5. DOI: 10.1002/cyto.a.23619.
32. Thiele J.A., Pitule P., Hicks J. et al. Single-cell analysis of circulating tumor cells. Methods Mol Biol 2019;1908:243–64. DOI: 10.1007/978-1-4939-9004-7_17.
33. Hodgkinson C.L., Morrow C.J., Li.Y. et al. Tumorigenicity and genetic profiling of circulating tumor cells in small-cell lung cancer. Nat Med 2014;20:897–903. DOI: 10.1038/nm.3600.
34. Girotti M.R., Gremel G., Lee R. et al. Application of sequencing, liquid biopsies, and patientderived xenografts for personalized medicine in melanoma. Cancer Discov 2016;6(3):286–99. DOI: 10.1158/2159-8290.CD-15-1336.
35. Carter L., Rothwell D.G., Mesquita B. et al. Molecular analysis of circulating tumor cells identifies distinct copy-number profiles in patients with chemosensitive and chemorefractory small-cell lung cancer. Nat Med 2016;23(1):114–9. DOI: 10.1038/nm.4239.
36. Torres-Ayuso P., Sahoo S., Ashton G. et al. Signaling pathway screening platforms are an efficient approach to identify therapeutic targets in cancers that lack known driver mutations: a case report for a cancer of unknown primary origin. NPJ Genomic Med 2018;3:15. DOI:10.1038/s41525-018-0055-6.
37. Klein E.A., Hubbell E., Maddala T. et al. Development of a comprehensive cell-free DNA (cfDNA) assay for early detection of multiple tumor types: the circulating cell-free genome atlas (CCGA) study. J Clin Oncol 2018;36(15_suppl):12021. DOI: 10.1200/JCO.2018.36.15_ suppl.12021.
38. Cohen J.D., Li L., Wang Y. et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science 2018;23;359(6378): 926–30. DOI: 10.1126/science.aar3247.
39. Sun K., Jiang P., Chan K.C. et al. Plasma DNA tissue mapping by genome-wide methylation sequencing for noninvasive prenatal, cancer, and transplantation assessments. Proc Natl Acad Sci USA 2015;112:E5503–12. DOI: 10.1073/pnas.1508736112.
40. Lehmann-Werman R., Neiman D., Zemmour H. et al. Identification of tissue-specific cell death using methylation patterns of circulating DNA. Proc Natl Acad Sci USA 2016;113:E1826–34. DOI: 10.1073/pnas.1519286113.
41. Guo S., Diep D., Plongthongkum N. et al. Identification of methylation haplotype blocks AIDS in deconvolution of heterogeneous tissue samples and tumor tissue-of-origin mapping from plasma DNA. Nat Genet 2017;49:635–42. DOI: 10.1038/ng.3805.
42. Matthew E.M., Zhou L., Yang Z. et al. A multiplexed marker-based algorithm for diagnosis of сarcinoma of unknown primary using circulating tumor cells. Oncotarget 2016;7:3662–76. DOI: 10.18632/oncotarget.6657.
43. Lu S.H., Tsai W.S., Chang Y.H. et al. Identifying cancer origin using circulating tumor cells. Cancer Biol Ther 2016;17:430–8. DOI: 10.1080/15384047.2016.1141839.
44. Bettegowda C., Sausen M., Leary R.J. et al. Detection of circulating tumor dna in early-and late-stage human malignancies. Sci Transl Med 2014;6:224ra24. DOI: 10.1126/scitranslmed.3007094.
Рецензия
Для цитирования:
Кононенко И.Б., Филиппова М.Г., Снеговой А.В., Гуторов С.Л. Перспектива использования жидкостной биопсии в диагностике и лечении опухолей невыявленной первичной локализации. Успехи молекулярной онкологии. 2020;7(4):10-19. https://doi.org/10.17650/2313-805X-2020-7-4-10-19
For citation:
Kononenko I.B., Filippova M.G., Snegovoy A.V., Gutorov S.L. The prospect of using liquid biopsy in diagnosis and treatment strategy in patients with carcinomas of unknown primary. Advances in Molecular Oncology. 2020;7(4):10-19. (In Russ.) https://doi.org/10.17650/2313-805X-2020-7-4-10-19