Preview

Успехи молекулярной онкологии

Расширенный поиск

Перспективы терапевтического воздействия на сигнальный путь FGFR

https://doi.org/10.17650/2313-805X.2015.2.1.027-038

Полный текст:

Аннотация

Одними из наиболее исследуемых в онкологии биомаркеров являются рецепторы к фактору роста фибробластов (FGFR), а также лиганды к фактору роста фибробластов (FGF). Молекулярные изменения в генах различных представителей семейства FGF или FGFR – довольно частое событие при злокачественных новообразованиях. Определение значимости комплекса FGF–FGFR в процессах канцерогенеза и в прогрессировании опухолей различной нозологии послужило толчком к появлению работ, посвященных поиску возможностей лекарственного воздействия на данный сигнальный путь. С точки зрения терапевтического воздействия на сигнальный путь FGFR возможно блокировать не только лиганды FGF и FGFR, но и нижележащие молекулы сигнальных путей, активирующихся под действием FGFR. Число ингибиторов тирозинкиназ, селективно блокирующих FGFR, на данный момент крайне невелико. Как правило, тирозинкиназные ингибиторы обладают широким спектром мишеней. Некоторые из таких ингибиторов уже вошли в клиническую практику лечения диссеминированных опухолей различной локализации, другие еще находятся на стадии клинических испытаний. Всего на сайте клинических испытаний clinicaltrials.gov на август 2014 г. зарегистрировано 74 исследования, посвященных изучению ингибиторов FGFR. Способностью ингибировать FGFR обладает также ряд существующих препаратов в высоких концентрациях – сорафениб, вандетаниб, мотесаниб, однако повышение концентрации этих препаратов ассоциировано с выраженной токсичностью лечения. В рекомендованных же терапевтических концентрациях адекватное блокирование тирозин-
киназного домена FGFR сомнительно. В статье уделено внимание таким препаратам, как пазопаниб, нинтеданиб, цедираниб, бриваниб, довитиниб, понатиниб. Рассмотрены результаты терапии ингибиторами FGFR при различных нозологиях: рак молочной железы, рак толстой кишки, рак эндометрия, рак желудка, рак щитовидной железы, рак легкого, рак яичников.
Несмотря на то, что анти-FGFR-терапия находится на раннем этапе клинического изучения в онкологии, уже сейчас видны определенные трудности в реализации данного лечебного подхода, такие как высокая токсичность, не всегда валидированная мишень воздействия, необходимость отбора пациентов в зависимости от активности FGF–FGFR-пути, а также наличия мутаций в генах молекул нижележащих сигнальных путей. В обзоре рассмотрены молекулярные процессы, возникающие при активации комплекса FGF–FGFR, а также пути терапевтического воздействия на данный комплекс, результаты исследований и перспективы применения ингибиторов сигнального пути FGFR.

Об авторах

Михаил Юрьевич Федянин
Отделение клинической фармакологии и химиотерапии ФГБНУ «Российский онкологический научный центр им. Н.Н. Блохина»
Россия
Россия, 115478, Москва, Каширское шоссе, 24


Д. Н. Хмелькова
ФГАОУ ВПО «Московский физико-технический институт (государственный университет)»
Россия

Лаборатория трансляционных исследований и персонализированной медицины Центра живых систем, Россия, 141700, Московская обл., Долгопрудный, Институтский пер., 9



Т. С. Серебрийская
ФГАОУ ВПО «Московский физико-технический институт (государственный университет)»
Россия
Лаборатория трансляционных исследований и персонализированной медицины Центра живых систем, Россия, 141700, Московская обл., Долгопрудный, Институтский пер., 9


Т. А. Никольская
ФГАОУ ВПО «Московский физико-технический институт (государственный университет)»
Россия
Лаборатория трансляционных исследований и персонализированной медицины Центра живых систем, Россия, 141700, Московская обл., Долгопрудный, Институтский пер., 9


С. А. Тюляндин
Отделение клинической фармакологии и химиотерапии ФГБНУ «Российский онкологический научный центр им. Н.Н. Блохина»
Россия
Россия, 115478, Москва, Каширское шоссе, 24


Список литературы

1. Itoh N. The Fgf families in humans, mice, and zebrafish: their evolutional processes and roles in development, metabolism, and disease. Biol Pharm Bull 2007;30(10):1819–25.

2. Ornitz D. M., Xu J., Colvin J. S. et al. Receptor specificity of the fibroblast growth factor family. J Biol Chem 1996;271(25):15292–7.

3. Turner N., Grose R. Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer 2010;10(2):116–29.

4. Katoh M., Nakagama H. FGF receptors: cancer biology and therapeutics. Med Res Rev 2014;34(2):280–300.

5. Beenken A., Mohammadi M. The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov 2009;8(3):235–53.

6. Bryant D. M., Stow J. L. Nuclear translocation of cell-surface receptors: lessons from fibroblast growth factor. Traffic 2005;6(10):947–54.

7. Imamura T., Engleka K., Zhan X. et al. Recovery of mitogenic activity of a growth factor mutant with a nuclear translocation sequence. Science 1990;249(4976):1567–70.

8. Bikfalvi A., Klein S., Pintucci G., Rifkin D. B. Biological roles of fibroblast growth factor-2. Endocr Rev 1997;18(1): 26–45.

9. Miller D. L., Ortega S., Bashayan O. et al. Compensation by fibroblast growth factor 1 (FGF1) does not account for the mild phenotypic defects observed in FGF2 null mice. Mol Cell Biol 2000;20(6):2260–8.

10. Dono R., Texido G., Dussel R. et al. Impaired cerebral cortex development and blood pressure regulation in FGF-2‑deficient mice. EMBO J 1998;17(15):4213–25.

11. Simons M., Horowitz A. Syndecan-4‑mediated signalling. Cell Signal 2001;13(12):855–62.

12. Ong S. H., Guy G. R., Hadari Y. R. et al. FRS2 proteins recruit intracellular signaling pathways by binding to diverse targets on fibroblast growth factor and nerve growth factor receptors. Mol Cell Biol 2000;20(3):979–89.

13. Ong S. H., Hadari Y. R., Gotoh N. et al. Stimulation of phosphatidylinositol 3‑kinase by fibroblast growth factor receptors is mediated by coordinated recruitment of multiple docking proteins. Proc Natl Acad Sci USA 2001;98(11):6074–9.

14. Lin N., Chen S., Pan W. et al. NP603, a novel and potent inhibitor of FGFR1 tyrosine kinase, inhibits hepatic stellate cell proliferation and ameliorates hepatic fibrosis in rats. Am J Physiol Cell Physiol 2011;301(2):C469–77.

15. Meloche S., Pouyssegur J. The ERK1 / 2 mitogen-activated protein kinase pathway as a master regulator of the G1- to S-phase transition. Oncogene 2007;26(22):3227–39.

16. Koziczak M., Holbro T., Hynes N. E. Blocking of FGFR signaling inhibits breast cancer cell proliferation through downregulation of D-type cyclins. Oncogene 2004;23(20):3501–8.

17. Lee J. G., Kay E. P. PI 3‑kinase / Rac1 and ERK1 / 2 regulate FGF-2‑mediated cell proliferation through phosphorylation of p27 at Ser10 by KIS and at Thr187 by Cdc25A / Cdk2. Invest Ophthalmol Vis Sci 2011;52(1):417–26.

18. Miyake M., Ishii M., Koyama N. et al. 1‑tert-butyl-3-[6-(3,5‑dimethoxy-phenyl)- 2-(4‑diethylamino-butylamino)-pyrido-[2,3‑d]-pyrimidin-7‑yl-urea (PD173074), a selective tyrosine kinase inhibitor of fibroblast growth factor receptor-3 (FGFR3), inhibits cell proliferation of bladder cancer carrying the FGFR3 gene mutation along with up-regulation of p27 / Kip1 and G1 / G0 arrest. J Pharmacol Exp Ther 2010;332(3):795–802.

19. Pardo O. E., Arcaro A., Salerno G. et al. Fibroblast growth factor-2 induces translational regulation of Bcl-XL and Bcl-2 via a MEK-dependent pathway: correlation with resistance to etoposideinduced apoptosis. J Biol Chem 2002;277(14):12040–6.

20. Goetz R., Mohammadi M. Exploring mechanisms of FGF signalling through the lens of structural biology. Nat Rev Mol Cell Biol 2013;14(3):166–80.

21. Balmanno K., Cook S. J. Tumour cell survival signalling by the ERK1 / 2 pathway. Cell Death Differ 2009;16(3):368–77.

22. Mohammadi M., Honegger A. M., Rotin D. et al. A tyrosine-phosphorylated carboxy-terminal peptide of the fibroblast growth factor receptor (Flg) is a binding site for the SH2 domain of phospholipase C-gamma 1. Mol Cell Biol 1991;11(10):5068–78.

23. Hart K. C., Robertson S. C., Kanemitsu M. Y. et al. Transformation and Stat activation by derivatives of FGFR1, FGFR3, and FGFR4. Oncogene 2000;19(29):3309–20.

24. Smith T. G., Karlsson M., Lunn J. S. et al. Negative feedback predominates over crossregulation to control ERK MAPK activity in response to FGF signalling in embryos. FEBS Lett 2006;580(17):4242–5.

25. Mason J. M., Morrison D. J., Basson M. A., Licht J. D. Sprouty proteins: multifaceted negative-feedback regulators of receptor tyrosine kinase signaling. Trends Cell Biol 2006;16(1):45–54.

26. Kovalenko D., Yang X., Nadeau R. J. et al. Sef inhibits fibroblast growth factor signaling by inhibiting FGFR1 tyrosine phosphorylation and subsequent ERK activation. J Biol Chem 2003;278(16): 14087–91.

27. Baird A., Böhlen P. Fibroblast growth factors, in Peptide growth factors and their receptors I. Springer, 1990. Pp. 369–418.

28. Matthews D. J., Gerritsen M. E. Targeting protein kinases for cancer therapy. John Wiley & Sons, 2011.

29. Федянин М. Ю., Хмелькова Д. Н., Серебрийская Т. С. и др. Рецепторы фактора роста фибробластов при злокачественных опухолях. Злокачественные опухоли 2014;(4). http://www.malignanttumours.org / . [Fedyanin M. Yu., Khmelkova D. N., Serebriyskaya

30. T. S. et al. Receptors of fibroblast growth factor at malignant tumours.. Zlokachestvennye opukholi = Malignant Tumours 2014;(4). http://www.malignanttumours.org / . (In Russ.)].

31. Byron S. A., Gartside M. G., Wellens C. et al. Inhibition of activated fibroblast growth factor receptor 2 in endometrial cancer cells induces cell death despite PTEN abrogation. Cancer Res 2008;68(17):6902–7.

32. Kunii K., Davis L., Gorenstein J. et al. FGFR2‑amplified gastric cancer cell lines require FGFR2 and Erbb3 signaling for growth and survival. Cancer Res 2008;68(7):2340–8.

33. Knights V., Cook S. J. De-regulated FGF receptors as therapeutic targets in cancer. Pharmacol Ther 2010;125(1):105–17.

34. Sarker D., Molife R., Evans T. R. et al. A phase I pharmacokinetic and pharmacodynamic study of TKI258, an oral, multitargeted receptor tyrosine kinase inhibitor in patients with advanced solid tumors. Clin Cancer Res 2008;14(7):2075–81.

35. Taylor S. K., Chia S., Dent S. et al. A phase II study of pazopanib in patients with recurrent or metastatic invasive breast carcinoma: a trial of the Princess Margaret Hospital phase II consortium. Oncologist 2010;15(8):810–8. 35. Cristofanilli M., Johnston S. R., Manikhas

36. A. et al. A randomized phase II study of lapatinib + pazopanib versus lapatinib in patients with HER2+ inflammatory breast cancer. Breast Cancer Res Treat 2013;137(2):471–82.

37. Brady J., Corrie P., Chau I. et al. An open-label study of the safety and tolerability of pazopanib in combination with FOLFOX6 or CapeOx in patients with colorectal cancer. Invest New Drugs 2013;31(5):1228–35.

38. Patel R. R., Sengupta S., Kim H. R. et al. Experimental treatment of oestrogen receptor (ER) positive breast cancer with tamoxifen and brivanib alaninate,a VEGFR-2 / FGFR-1 kinase inhibitor: a potential clinical application of angiogenesis inhibitors. Eur J Cancer 2010;46(9):1537–53.

39. Shiang C. Y., Qi Y., Wang B. et al. Amplification of fibroblast growth factor receptor-1 in breast cancer and the effects of brivanib alaninate treat 2010;123(3):747– 55.

40. Siu L., Shapiro J. D., Jonker D. J. et al. NCIC Clinical Trials Group and AGITG: Phase III randomized trial of cetuximab (CET) plus either brivanib alaninate (BRIV) or placebo in patients (pts) with metastatic (MET) chemotherapy refractory K-RAS wild-type (WT) colorectal carcinoma (CRC): The NCIC Clinical Trials Group and AGITG CO. 20 trial. J Clin Oncol 2012;30 (Suppl 4):3504.

41. Dempke W. C., Zippel R. Brivanib, a novel dual VEGF-R2 / bFGF-R inhibitor. Anticancer Res 2010;30(11):4477–83.

42. Wilson D., Hoff P. M., Schmoll H. et al. Application of adaptive study designs: Phase II and III results from the cediranib (CED) HORIZON (HZ) II and III studies. J Clin Oncol 2011;29(suppl):abstr 3633.

43. Raja F., Perren T., Raja F. A. et al. Randomized double-blind phase III trial of cediranib (AZD 2171) in relapsed platinum sensetive ovarisn cancer: results of the ICON6 trial. Int J Cynecol Cancer 2013;23(8).

44. Okamoto I., Kaneda H., Satoh T. et al. Phase I safety, pharmacokinetic, and biomarker study of BIBF 1120, an oral triple tyrosine kinase inhibitor in patients with advanced

45. solid tumors. Mol Cancer Ther 2010;9(10):2825–33.

46. Mross K., Stefanic M., Gmehling D. et al. Phase I study of the angiogenesis inhibitor BIBF 1120 in patients with advanced solid tumors. Clin Cancer Res 2010;16(1):311–9.

47. du Bois A., Huober J., Stopfer P. et al. A phase I open-label dose-escalation study of oral BIBF 1120 combined with standard paclitaxel and carboplatin in patients with advanced gynecological malignancies. Ann Oncol 2010;21(2):370–5.

48. Kropff M., Kienast J., Bisping G. et al. An open-label dose-escalation study of BIBF 1120 in patients with relapsed or refractory multiple myeloma. Anticancer Res 2009;29(10):4233–8.

49. Lee C., Attard G., Poupard L. et al. A phase I study of BIBF 1120, an orally active triple angiokinase inhibitor (VEGFR, PDGFR, FGFR) in patients with advanced solid malignancies. J Clin Oncol 2005;23:3054.

50. Reck M., Kaiser R., Eschbach C. et al. A phase II double-blind study to investigate efficacy and safety of two doses of the triple angiokinase inhibitor BIBF 1120 in patients with relapsed advanced non-small-cell lung cancer. Ann Oncol 2011;22(6):1374–81.

51. Ledermann J. A., Hackshaw A., Kaye S. et al. Randomized phase II placebocontrolled trial of maintenance therapy using the oral triple angiokinase inhibitor BIBF 1120 after chemotherapy for relapsed ovarian cancer. J Clin Oncol 2011;29(28):3798–804.

52. Bouche O., Maindrault-Goebel F., Ducreux M. et al. Phase II trial of weekly alternating sequential BIBF 1120 and afatinib for advanced colorectal cancer. Anticancer Res 2011;31(6):2271–81.

53. Molife R., de Bono J. S., Bell S. et al. A phase II trial to compare BIBF 1120 or BIBW 2992 monotherapy versus a combination of sequential administration of both medications in patients with hormone refractory prostate cancer (HRPC); ASCO Genitourinary Cancers Symposium. Orlando FLA, USA, 2009.

54. Du Bois A., Kristensen G., Ray-Coquard I. et al. AGO-OVAR 12: а randomized placebocontrolled GCIG / ENGOT-Intergroup phase III trial of standard frontline chemotherapy + / – nintedanib for advanced ovarian cancer. Int J Gynecol Cancer 2013;23(8 Suppl):7–8.

55. Reck M., Kaiser R., Mellemgaard A. et al. Docetaxel plus nintedanib versus docetaxel plus placebo in patients with previously treated non-small-cell lung cancer(LUME-Lung 1): a phase 3, doubleblind, randomised controlled trial. Lancet Oncol 2014;15(2):143–55.

56. Konecny G. N., Finkler N., Garcia A. A. et al. Phase 2 study of second-line dovitinib (TKI258) in patients with fibroblast growth factor receptor 2 (FGFR2) – mutated or nonmutated advanced and / or metastatic endometrial cancer. ESMO 2014. LBA27.

57. Brooks A. N., Kilgour E., Smith P. D. Molecular pathways: fibroblast growth factor signaling: a new therapeutic opportunity in cancer. Clin Cancer Res 2012;18(7): 1855–62.

58. Dey J. H., Bianchi F., Voshol J. et al. Targeting fibroblast growth factor receptors blocks PI3K / AKT signaling, induces apoptosis, and impairs mammary tumor outgrowth and metastasis. Cancer Res 2010;70(10):4151–62.

59. Koziczak M., Hynes N. E. Cooperation between fibroblast growth factor receptor-4 and ErbB2 in regulation of cyclin D1 translation. J Biol Chem 2004;279(48):50004–11.

60. Andre F. D. F., Daly F., Azim H. A. et al. FINESSE: An open, three-cohort, phase II trial testing oral administration of lucitanib in patients with FGFR1‑amplified or nonamplified estrogen receptor-positive metastatic breast cancer. J Clin Oncol 2014;32(5s):abstr TPS1134.

61. Gozgit J. M., Wong M. J., Moran L. et al. Ponatinib (AP24534), a multitargeted pan-FGFR inhibitor with activity in multiple FGFR-amplified or mutated cancer models. Mol Cancer Ther 2012;11(3):690–9.

62. Gild M. L., Bullock M., Robinson B. G., Clifton-Bligh R. Multikinase inhibitors: a new option for the treatment of thyroid cancer. Nat Rev Endocrinol 2011;7(10):617–24.

63. Gavine P. R., Mooney L., Kilgour E. et al. AZD4547: an orally bioavailable, potent, and selective inhibitor of the fibroblast growth factor receptor tyrosine kinase family. Cancer Res 2012;72(8):2045–56.

64. Guagnano V., Furet P., Spanka C. et al. Discovery of 3-(2,6‑dichloro-3,5‑dimethoxyphenyl)-1-{6-[4-(4‑ethyl-piperazin-1‑yl)-phenylamin o]-pyrimidin-4‑yl}-1‑methylurea (NVP-BGJ398), a potent and selective inhibitor of the fibroblast growth factor receptor family of receptor tyrosine kinase. J Med Chem 2011;54(20):7066–83.

65. Martinez-Torrecuadrada J., Cifuentes G., López-Serra P. et al. Targeting the extracellular domain of fibroblast growth factor receptor 3 with human single-chain Fv antibodies inhibits bladder carcinoma cell line proliferation. Clin Cancer Res 2005;11(17):6280–90.

66. Qing J., Du X., Chen Y. et al. Antibodybased targeting of FGFR3 in bladder carcinoma and t(4;14) – positive multiple myeloma in mice. J Clin Invest 2009;119(5):1216–29.

67. Zhang H., Lorianne M., Baker K. et al. FP-1039 (FGFR1: Fc), a soluble FGFR1 receptor antagonist, inhibits tumor growth and angiogenesis. Mol Cancer Ther 2007;6(11 Suppl):B55.


Для цитирования:


Федянин М.Ю., Хмелькова Д.Н., Серебрийская Т.С., Никольская Т.А., Тюляндин С.А. Перспективы терапевтического воздействия на сигнальный путь FGFR. Успехи молекулярной онкологии. 2015;2(1):027-038. https://doi.org/10.17650/2313-805X.2015.2.1.027-038

For citation:


Fedyanin M.Y., Khmelkova D.N., Serebriyskaya T.S., Nikolskaya T.A., Tyulyandin S.A. Prospects of therapeutic action on FGFR signaling pathway. Advances in molecular oncology. 2015;2(1):027-038. (In Russ.) https://doi.org/10.17650/2313-805X.2015.2.1.027-038

Просмотров: 689


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2313-805X (Print)
ISSN 2413-3787 (Online)