Preview

Успехи молекулярной онкологии

Расширенный поиск

Прогностическая и предиктивная значимость остеопонтина при злокачественных новообразованиях

https://doi.org/10.17650/2313-805X-2021-8-2-23-28

Полный текст:

Аннотация

Остеопонтин – это белок внеклеточного матрикса, который продуцируется разными типами клеток и играет важную функциональную роль во многих биологических процессах. В данном обзоре рассматриваются основные функции остеопонтина, его роль в прогрессии и химиорезистентности злокачественных новообразований, регуляции эпителиально-мезенхимального перехода, ангиогенеза и иммунного ответа организма на опухоль. В статье обсуждаются известные в настоящий момент механизмы, при помощи которых остеопонтин оказывает влияние на выживаемость, подвижность и инвазию опухолевых клеток, чувствительность опухоли к лекарственному лечению, а также представлены перспективы комплексного изучения предиктивной значимости этого белка, маркеров гипоксии, ангиогенеза, эпителиально-мезенхимального перехода и иммунологической толерантности.

Об авторах

Е. Ю. Зубарева
ГБУЗ «Оренбургский областной клинический онкологический диспансер»; ФГБОУ ВО «Оренбургский государственный медицинский университет»
Россия

Евгения Юрьевна Зубарева

Россия, 460021 Оренбург, пр-т Гагарина, 11

Россия, 460000 Оренбург, ул. Советская, 6



М. А. Сеньчукова
ГБУЗ «Оренбургский областной клинический онкологический диспансер»; ФГБОУ ВО «Оренбургский государственный медицинский университет»
Россия

Россия, 460021 Оренбург, пр-т Гагарина, 11

Россия, 460000 Оренбург, ул. Советская, 6



Список литературы

1. Denhardt D.T., Guo X. Osteopontin: a protein with diverse functions. FASEB J 1993;7(15):1475–82.

2. Березин А.Е., Панасенко Т.А., Корецкая Е.Ю. Остеопонтин как новый биологический маркер сердечно-сосудистого ремоделирования. Украинский кардиологический журнал 2010;4: 98–102.

3. Шибанова И.А., Хрячкова О.Н. Ис- пользование биомаркеров фосфорно- кальциевого обмена для диагностики и риск-стратификации больных ишемической болезнью сердца. Русский медицинский журнал 2017;20:1409–14.

4. Wai P.Y., Kuo P.C. The role of osteopontin in tumor metastasis. J Surg Res 2004;121(2):228–41. DOI: 10.1016/j.jss.2004.03.028.

5. Gimba E., Brum M., Moraes G.N. Fulllength osteopontin and its splice variants as modulators of chemoresistance and radioresistance (Review). Int J Oncol 2019 Feb;54(2):420–30. DOI: 10.3892/ijo.2018.4656.

6. Senger D.R., Wirth D.F., Hynes R.O. Transformed mammalian cells secrete specific proteins and phosphoproteins. Cell 1979;16:885–93. DOI: 10.1016/0092-8674(79)90103-X.

7. Каюкова Е.В., Белокриницкая Т.Е., Шолохов Л.Ф., Терешков П.П. Уровень некоторых гематологических воспалительных маркеров у больных раком шейки матки в зависимости от морфологических особенностей первичной опухоли. Успехи молекулярной онкологии 2019;6(3):49–56.

8. Moorman H.R., Poschel D., Klement J.D. et al. Osteopontin: a key regulator of tumor progression and immunomodulation. Can cers(Basel) 2020;12(11):3379. DOI: 10.3390/cancers12113379.

9. Castello L.M., Raineri D., Salmi L. et al. Osteopontin at the crossroads of inflammation and tumor progression. Mediators Inflamm 2017;2017:4049098. DOI: 10.1155/2017/4049098.

10. Zhou Y., Yao Y., Sheng L. et al. Osteopontin as a candidate of therapeutic application for the acute brain injury. J Cell Mol Med 2020;24(16):8918–29. DOI: 10.1111/jcmm.15641.

11. Mirza M., Shaughnessy E., Hurley J.K. et al. Osteopontin-c is a selective marker of breast cancer. Int J Cancer 2008;122(4): 889–97. DOI: 10.1002/ijc.23204.

12. Zduniak K., Ziolkowski P., Ahlin C. et al. Nuclear osteopontin-c is a prognostic breast cancer marker. Br J Cancer 2015; 112(4):729–38. DOI: 10.1038/bjc.2014.664.

13. Tang X., Li J., Yu B. et al. Osteopontin splice variants differentially exert clinicopathological features and biological functions in gastric cancer. Int J Biol Sci 2013;9(1):55–66. DOI: 10.7150/ijbs.5280.

14. Jia R., Liang Y., Chen R. et al. Osteopontin facilitates tumor metastasis by regulating epithelial-mesenchymal plasticity. Cell Death Dis 2016;7(12): e2564. DOI: 10.1038/cddis.2016.422.

15. Irby R.B., McCarthy S.M., Yeatman T.J. Osteopontin regulates multiple functions contributing to human colon cancer development and progression. Clin Exp Metastasis 2004;21(6):515–23. DOI: 10.1007/s10585-004-2873-4.

16. Hedley B.D., Welch D.R., Allan A.L. et al. Downregulation of osteopontin contributes to metastasis suppression by breast cancer metastasis suppressor 1. Int J Cancer 2008; 123(3):526–34. DOI: 10.1002/ijc.23542.

17. Bandopadhyay M., Bulbule A., Butti R. et al. Osteopontin as a therapeutic target for cancer. Expert Opin Ther Targets 2014;18(8):883–95. DOI: 10.1517/14728222.2014.925447.

18. Mohammadi S., Ghaffari S.H., Shaiegan M. et al. Acquired expression of osteopontin selectively promotes enrichment of leukemia stem cells through AKT/mTOR/PTEN/β-catenin pathways in AML cells. Life Sci 2016;152:190–8. DOI: 10.1016/j.lfs.2016.04.003.

19. Kalluri R., Weinberg R.A. The basics of epithelial-mesenchymal transition. J Clin Investig 2009;119(6):1420–8. DOI: 10.1172/JCI39104.

20. Cao J., Li J., Sun L. et al. Hypoxia-driven paracrine osteopontin/integrin αvβ3 signaling promotes pancreatic cancer cell epithelial-mesenchymal transition and cancer stem cell-like properties by modulating forkhead box protein M1. Mol Oncol 2019;13(2):228–45. DOI: 10.1002/1878-0261.12399.

21. Li N.Y., Weber C.E., Mi Z. et al. Osteopontin up-regulates critical epithelial-mesenchymal transition transcription factors to induce an aggressive breast cancer phenotype. J Am Coll Surg 2013;217(1):17–26. DOI: 10.1016/j.jamcollsurg.2013.02.025.

22. Li N.Y., Weber C.E., Wai P.Y. et al. An MAPK-dependent pathway induces epithelial-mesenchymal transition via Twist activation in human breast cancer cell lines. Surgery 2013;154(2):404–10. DOI: 10.1016/j.surg.2013.05.012.

23. Dong Q., Zhu X.-C., Dai C. et al. Osteopontin regulated epithelialmesenchymal transition via PI3K/AKT signaling pathway in hepatocellular carcinoma. Cancer Res 2013;73:2695. Available at: https://cancerres.aacrjournals.org/content/73/8_Supplement/2695.short.

24. Ng L., Wan T.M.-H., Lam C.S.-Ch. et al. Post-operative plasma osteopontin predicts distant metastasis in human colorectal cancer. PLoS One 2015;10(5):e0126219. DOI: 10.1371/journal.pone.0126219.

25. Scimeca M., Giannini E., Antonacci C. et al. Microcalcifications in breast cancer: An active phenomenon mediated by epithelial cells with mesenchymal characteristics. BMC Cancer 2014;14:286. DOI: 10.1186/1471-2407-14-286.

26. Rizwan A., Paidi S.K., Zheng C. et al. Mapping the genetic basis of breast microcalcifications and their role in metastasis. Sci Rep 2018;8(1):11067. DOI: 10.1038/s41598-018-29330-9.

27. Kothari A.N., Arffa M.L., Chang V. et al. Osteopontin-A master regulator of epithelial-mesenchymal transition. J Clin Med 2016 Mar 23;5(4):39. DOI: 10.3390/jcm5040039.

28. Gnemmi V., Bouillez A., Gaudelot K. et al. MUC1 drives epithelial-mesenchymal transition in renal carcinoma through Wnt/β-catenin pathway and interaction with SNAIL promoter. Cancer Lett 2014;346(2):225–36. DOI: 10.1016/j.canlet.2013.12.029.

29. Zhu M., Yin F., Fan X. et al. Decreased TIP30 promotes Snail-mediated epithelial–mesenchymal transition and tumor-initiating properties in hepatocellular carcinoma. Oncogene 2015;34(11): 1420–31. DOI: 10.1038/onc.2014.73.

30. Bhattacharya S.D., Mi Z., Kim V.M. et al. Osteopontin regulates epithelial mesenchymal transition-associated growth of hepatocellular cancer in a mouse xenograft model. Ann Surg 2012;255(2):319–25. DOI: 10.1097/SLA.0b013e31823e3a1c.

31. Song G., Cai Q., Mao Y. et al. Osteopontin promotes ovarian cancer progression and cell survival and increases HIF-1α expression through the PI3-K/Akt pathway. Cancer Sci 2008;99(10):1901–7. DOI: 10.1111/j.1349-7006.2008.00911.x.

32. Song G., Ouyang G., Mao Y. et al. Osteopontin promotes gastric cancer metastasis by augmenting cell survival and invasion through Akt-mediated HIF-1α up-regulation and MMP9 activation. J Cell Mol Med 2009;13(8B):1706–18. DOI: 10.1111/j.1582-4934.2008.00540.x.

33. Kothari A.N., Mi Z., Zapf M., Kuo P.C. Novel clinical therapeutics targeting the epithelial to mesenchymal transition. Clin Transl Med 2014;3:14–35. DOI: 10.1186/s40169-014-0035-0.

34. Nakano M., Ariyama H., Tamura S. et al. Plasticity of CD44 colorectal cancer stem cells depends on TGF-beta-induced epithelial mesenchymal transition (EMT): evidences from ex vivo culture system. Cancer Res 2015;75. Available at: https://cancerres.aacrjournals.org/content/75/15_Supplement/1520.short.

35. Pore M.M., Buikema L., Hiltermann T., Kruyt F. TGF beta-mediated epithelial to mesenchymal transition in non small cell lung cancer: Effects on stemness, invasiveness and chemotherapy sensitivity. Cancer Res 2012;72:2402. DOI: 10.1158/1538-7445.AM2012-2402.

36. Yu Y., Xiao C., Tan L. et al. Cancerassociated fibroblasts induce epithelial– mesenchymal transition of breast cancer cells through paracrine TGF-β signalling. Br J Cancer 2014;110(3):724–32. DOI: 10.1038/bjc.2013.768.

37. Clemente N., Raineri D., Cappellano G. et al. Osteopontin bridging innate and adaptive immunity in autoimmune diseases. J Immunol Res 2016;2016:7675437. DOI: 10.1155/2016/7675437.

38. Shurin M.R. Osteopontin controls immunosuppression in the tumor microenvironment. J Clin Investig 2018;128(12):5209–12. DOI: 10.1172/JCI124918.

39. Weber G.F., Zawaideh S., Hikita S. et al. Phosphorylation-dependent interaction of osteopontin with its receptors regulates macrophage migration and activation. J Leukoc Biol 2002;72(4):752–61. DOI: 10.1189/jlb.72.4.752.

40. Klement J.D., Paschall A.V., Redd P.S. et al. An osteopontin/CD44 immune checkpoint controls CD8+ T cell activation and tumor immune evasion. J Clin Investig 2018;128(12):5549–60. DOI: 10.1172/JCI123360.

41. Wei J., Marisetty A., Schrand B. et al. Osteopontin mediates glioblastomaassociated macrophage infiltration and is a potential therapeutic target. J Clin Investig 2019;129(1):137–49. DOI: 10.1172/JCI121266.

42. Fan X., He C., Jing W. et al. Intracellular osteopontin inhibits toll-like receptor signaling and impedes liver carcinogenesis. Cancer Res 2015;75(1):86–97. DOI: 10.1158/0008-5472.CAN-14-0615.

43. Silva V.R., Neves S.P., Santos L.S. et al. Challenges and therapeutic opportunities of autophagy in cancer therapy. Cancers (Basel) 2020;12(11):3461. DOI: 10.3390/cancers12113461.

44. Liu G., Fan X., Tang M. et al. Osteopontin induces autophagy to promote chemo-resistance in human hepatocellular carcinoma cells. Cancer Lett 2016;383(2):171–82. DOI: 10.1016/j.canlet.2016.09.033.

45. Lei Y., Zhang D., Yu J. et al. Targeting autophagy in cancer stem cells as an anticancer therapy. Cancer Lett 2017;393:33–9. DOI: 10.1016/j.canlet.2017.02.012.

46. Zhang H., Lu B. The roles of ceRNAsmediated autophagy in cancer chemoresistance and metastasis. Cancers (Basel) 2020;12(10):2926. DOI: 10.3390/cancers12102926.

47. Yang M.C., Wang H.C., Hou Y.C. et al. Blockade of autophagy reduces pancreatic cancer stem cell activity and potentiates the tumoricidal effect of gemcitabine. Mol Cancer 2015;14:179. DOI: 10.1186/s12943-015-0449-3.

48. Panah Z., Nikbakht M., Sajjadi S.M. et al. Anti-apoptotic effects of osteopontin via the up-regulation of AKT/mTOR/β- catenin loop in acute myeloid leukemia cells. Int J Hematol Oncol Stem Cell Res 2017;11(2):148–57.

49. Ding K., Fan L., Chen S. et al. Overexpression of osteopontin promotes resistance to cisplatin treatment in HCC. Oncol Rep 2015;34(6):3297–303. DOI: 10.3892/or.2015.4306.

50. Liu X., Fan D. The epithelial-mesenchymal transition and cancer stem cells: functional and mechanistic links. Curr Pharm Des 2015;21(10):1279–91. DOI: 10.2174/1381612821666141211115611.

51. Pang H., Cai L., Yang Y. et al. Knockdown of osteopontin chemosensitizes MDA-MB-231 cells to cyclophosphamide by enhancing apoptosis through activating p38 MAPK pathway. Cancer Biother Radio 2011;26(2):165–73. DOI: 10.1089/cbr.2010.0838.

52. Yang L., Wei L., Zhao W. et al. Downregulation of osteopontin expression by RNA interference affects cell proliferation and chemotherapy sensitivity of breast cancer MDA-MB-231 cells. Mol Med Rep 2012;5(2):373–6. DOI: 10.3892/mmr.2011.679.

53. Yi H., Zeng D., Shen Z. et al. Integrin alphavbeta3 enhances β-catenin signaling in acute myeloid leukemia harboring Fmslike tyrosine kinase-3 internal tandem duplication mutations: implications for microenvironment influence on sorafenib sensitivity. Oncotarget 2016;7(26):40387–97. DOI: 10.18632/oncotarget.9617.

54. Han B., Huang J., Han Y. et al. The microRNA miR-181c enhances chemosensitivity and reduces chemoresistance in breast cancer cells via downregulating osteopontin. Int J Biol Macromol 2019;125:544–56. DOI: 10.1016/j.ijbiomac.2018.12.075.

55. Gu T., Ohashi R., Cui R. et al. Osteopontin is involved in the development of acquired chemo-resistance of cisplatin in small cell lung cancer. Lung Cancer 2009;66(2):176–83. DOI: 10.1016/j.lungcan.2009.02.004.

56. Insua-Rodríguez J., Pein M., Hongu T. et al. Stress signaling in breast cancer cells induces matrix components that promote chemoresistant metastasis. EMBO Mol Med 2018;10(10):e9003. DOI: 10.15252/emmm.201809003.

57. Ng L., Wan T., Chow A. et al. Osteopontin overexpression induced tumor progression and chemoresistance to oxaliplatin through induction of stemlike properties in human colorectal cancer. Stem Cells Int 2015;2015:247892. DOI: 10.1155/2015/247892.

58. Pectasides D., Papaxoinis G., Kalogeras K.T. et al. XELIRI-bevacizumab versus FOLFIRI-bevacizumab as first-line treatment in patients with metastatic colorectal cancer: a hellenic cooperative oncology group phase III trial with collateral biomarker analysis. BMC Cancer 2012;12:271. DOI: 10.1186/1471-2407-12-271.

59. Thoms J.W., Dal Pra A., Anborgh P.H. et al. Plasma osteopontin as a biomarker of prostate cancer aggression: relationship to risk category and treatment response. Br J Cancer 2012;107(5):840–6. DOI: 10.1038/bjc.2012.345.

60. Elbaiomy M.A., Akl T., Elhelaly R. et al. Osteopontin level and promoter polymorphism in patients with metastatic breast cancer. Curr Oncol 2020;27(5): e444–e450. DOI: 10.3747/co.27.6449.

61. Anborgh P.H., Caria L.Br., Chambers A.F. et al. Role of plasma osteopontin as a biomarker in locally advanced breast cancer. Am J Transl Res 2015;7(4):723–32.

62. Hao C., Cui Y., Owen S. et al. Human osteopontin: Potential clinical applications in cancer (Review). Int J Mol Med 2017;39(6): 1327–37. DOI: 10.3892/ijmm.2017.2964.

63. Xu Y.-Y., Zhang Y.-Y., Lu W.-F. et al. Prognostic value of osteopontin expression in breast cancer: a meta-analysis. Mol Clin Oncol 2015;3(2):357–62. DOI: 10.3892/mco.2014.480.

64. Bramwell V.H., Tuck A.B., Chapman J.- A.W. et al. Assessment of osteopontin in early breast cancer: correlative study in a randomised clinical trial. Breast Cancer Res 2014;16(1):R8. DOI: 10.1186/bcr3600.

65. Karlikova M., Topolcan O., Narsanska A. et al. Circulating growth and angiogenic factors and lymph node status in earlystage breast cancer – a pilot study. Anticancer Res 2016;36(8):4209–14.

66. Gu M., Zheng X. Osteopontin and vasculogenic mimicry formation are associated with response to neoadjuvant chemotherapy in advanced breast cancer. Onco Targets Ther 2017;10:4121–7. DOI: 10.2147/OTT.S12941.

67. Zduniak K., Agrawal A., Agrawal S. et al. Osteopontin splice variants are differential predictors of breast cancer treatment responses. BMC Cancer 201611;16:441. DOI: 10.1186/s12885-016-2484-x.

68. Anborgh P.H., Lee D.J., Stam P.F. et al. Role of osteopontin as a predictive biomarker for anti-EGFR therapy in triple-negative breast cancer. Expert Opin Ther Targets 2018;22(8):727–34. DOI: 10.1080/14728222.2018.1502272.


Для цитирования:


Зубарева Е.Ю., Сеньчукова М.А. Прогностическая и предиктивная значимость остеопонтина при злокачественных новообразованиях. Успехи молекулярной онкологии. 2021;8(2):23-28. https://doi.org/10.17650/2313-805X-2021-8-2-23-28

For citation:


Zubareva E.Yu., Senchukova M.A. Prognostic and predictive significance of osteopontin in malignant neoplasms. Advances in Molecular Oncology. 2021;8(2):23-28. (In Russ.) https://doi.org/10.17650/2313-805X-2021-8-2-23-28

Просмотров: 68


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2313-805X (Print)
ISSN 2413-3787 (Online)
X