The role of mutations in NF1 gene in sporadic carcinogenesis
https://doi.org/10.17650/2313-805X-2021-8-3-25-33
Abstract
The review article presents data on somatic inactivation of NF1 gene as a cause of sporadic malignant neoplasms. The re- lationship between the features of specific tumors in neurofibromatosis type 1 and specific types of sporadic neoplasms, in which mutations in NF1 gene are found, are presented. Evidence for the role of somatic mutations in NF1 gene in the development of chemoresistance in melanoma, neuroblastoma, ovarian and breast cancer, and lung cancer is described (only if there are no mutations of known protooncogenes). To overcome the resistance of these neoplasms, inhibitors of mitogen-activated protein kinase have been proposed, the effectiveness of which has been proven in the treatment of plexiform neurofibromas. The review presents evidence of the relationship between NF1 and microRNA, which can be used for targeted therapy of both neurofibromatosis type 1 and sporadic neoplasms with mutations of this gene. Prospects for gene therapy of these diseases are considered.
About the Author
R. N. MustafinRussian Federation
3 Lenin St., Ufa 450008
References
1. Haferlach C., Grossmann V., Kohlmann A. et al. Deletion of the tumor-suppressor gene NF1 occur in 5 % of myeloid malignancies and is accompanied by a mutation in the remaining allele in half of the cases. Leukemia 2012;26(4):834–9. DOI: 10.1038/leu.2011.296.
2. Gutmann D.H., Ferner R.E., Listernick R.H. et al. Neurofibromatosis type 1. Nat Rev Dis Primers 2017;3:17004. DOI: 10.1038/nrdp.2017.4.
3. Bai R.Y., Esposito D., Tam A.J. et al. Feasibility of using NF1-GRD and AAV for gene replacement therapy in NF1-associated tumors. Gene Ther 2019;26(6): 277–86. DOI: 10.1038/s41434-019-0080-9.
4. Tsuji G., Takai-Yumine A., Kato T., Furue M. Metalloproteinase 1 downregulation in neurofibromatosis 1: therapeutic potential of antimalarial hydroxychloroquine and chloroquine. Cell Death Dis 2021;12(6):513. DOI: 10.1038/s41419-021-03802-9.
5. Stewart D.R., Korf B.R., Nathanson K.L. et al. Care of adults with neurofibromatosis type 1: a clinical practice resource of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2018;20(7):671–82. DOI: 10.1038/gim.2018.28.
6. Ly K.L., Blakeley J.O. The diagnosis and management of neurofibromatosis type 1. Med Clin North Am 2019;103:1035–54. DOI: 10.1016/j.mcna.2019.07.004.
7. Sung H., Hyland P.L., Pemov A. et al. Genome-wide association study of café-au-lait macule number in neurofibromatosis type 1. Mol Genet Genomic Med 2020;8(10):e1400. DOI: 10.1002/mgg3.1400.
8. Anderson J.L., Gutmann D.H. Neurofibromatosis type 1. Handb Clin Neurol 2015;132:75–86. DOI: 10.1016/B978-0-444-627025.00004-4.
9. Costa A.D.A., Gutmann D.H. Brain tumors in neurofibromatosis type 1. Neurooncol Adv 2019;1(1):vdz040. DOI: 10.1093/noajnl/vdz040.
10. Wei C.J., Gu S.C., Ren J.Y. et al. The impact of host immune cells on the development of neurofibromatosis type 1: the abnormal immune system provides an immune microenvironment for tumorigenesis. Neurooncol Adv 2019;1(1):vdz037. DOI: 10.1093/noajnl/vdz037.
11. Yang F.C., Ingram D.A., Chen S. et al. Neurofibromin-deficient Schwann cells secrete a potent migratory stimulus for Nf1+/– mast cells. J Clin Invest 2003;112(12):1851–61. DOI: 10.1172/JCI19195.
12. Chen S., Burgin S., McDaniel A. et al. Nf1–/– Schwann cell-conditioned medium modulates mast cell degranulation by c-Kit-mediated hyperactivation of phpsphatidylinositol 3-kinase. Am J Pathol 2010;177(6):3125–32. DOI: 10.2353/ajpath.2010.100369.
13. Karmakar S., Reilly K.M. The role of the immune system in neurofibromatosis type 1-associated nervous system tumors. CNS Oncol 2017;6(1):45–60. DOI: 10.2217/cns-2016-0024.
14. Seminog O.O., Goldacre M.J. Risk of benign tumours of nervous system, and of malignant neoplasms, in people with neurofibromatosis: population-based record-linkage study. Br J Cancer 2013;108(1):193–8. DOI: 10.1038/bjc.2012.535.
15. Holzel M., Huang S., Kostel J. et al. NF1 is a tumor suppressor in neuroblastoma that determines retinoic acid response and disease outcome. Cell 2010;142(2): 218–29. DOI: 10.1016/j.cell.2010.06.004.
16. Beauchamp E.M., Woods B.A., Dulak A.M. et al. Acquired resistance to dasatinib in lung cancer cell lines conferred by DDR2 gatekeeper mutation and NF1 loss. Mol Cancer Ther 2014;13(2):475–82. DOI: 10.1158/1535-7163.MCT-13-0817.
17. Patch A.M., Christie E.L., Etemadmoghadam D. et al. Wholegenome characterization of chemoresistant ovarian cancer. Nature 2015;521(7553): 489–94. DOI: 10.1038/nature14410.
18. Sokol E.S., Feng Y.X., Jin D.X. et al. Loss of function of NF1 is a mechanism of acquired resistance to endocrine therapy in lobular breast cancer. Ann Oncol 2019;30(1):115–23. DOI: 10.1093/annonc/mdy497.
19. Georgiou A., Stewart A., Cunningham D. et al. Inactivation of NF1 promotes resistance to EGFR Inhibition in KRAS/ NRAS/BRAFV600-wild-type colorectal cancer. Mol Cancer Res 2020;18(6):835–46. DOI: 10.1158/1541-7786.MCR-19-1201.
20. Zheng Z.Y., Anurag M., Lei J.T. et al. Neurofibromin is an estrogen receptor-α transcriptional co-repressor in breast cancer. Cancer Cell 2020;37(3):387– 402.e.7. DOI: 10.1016/j.ccell.2020.02.003.
21. Shain A.H., Garrido M., Botton T. et al. Exome sequencing of desmoplastic melanoma identifies recurrent NFKBIE promoter mutations and diverse activating mutations in the MAPK pathway. Nat Genet 2015;47(10):1194–9. DOI: 10.1038/ng.3382.
22. Wiesner T., Kiuru M., Scott S.N. et al. NF1 mutations are common in desmoplastic melanoma. Am J Surg Pathol 2015;39(10):1357–62. DOI: 10.1097/PAS.0000000000000451.
23. Krauthammer M., Kong Y., Bacchiocchi A. et al. Exome sequencing identifies recrurrent mutations in NF1 and RASopathy genes in sun-exposed melanomas. Nat Genet 2015;47(9):996–1002. DOI: 10.1038/ng.3361.
24. Kandoth C., McLellan M.D., Vandin F. et al. Mutational landscape and significance across 12 major cancer types. Nature 2013;502(7471):333–9. DOI: 10.1038/nature12634.
25. Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature 2014;511(7511): 543–50. DOI: 10.1038/nature13385.
26. Alves Junior S.F., Zanetti G., de Melo A.S. et al. Neurofibromatosis type 1: state-of-the-art review with emphasis on pulmonary involvement. Respir Med 2019;149:9–15. DOI: 10.1016/j.rmed.2019.01.002.
27. Stiller C.A., Chessells J.M., Fitchett M. Neurofibromatosis and childhood leukaemia/lymphoma: a population-based UKCCSG study. Br J Cancer 1994;70(5): 969–72. DOI: 10.1038/bjc.1994.431.
28. Boudry-Labis E., Roche-Lestienne C., Nibourel O. et al. Neurofibromatosis-1 gene deletions and mutations in de novo adult acute myeloid leukemia. Am J Hematol 2013;88(4):306–11. DOI: 10.1002/ajh.23403.
29. Suarez-Kelly L.P., Yu L., Kline D. et al. Increased breast cancer risk in women with neurofibromatosis type 1: a metaanalysis and systematic review of the literature. Hered Cancer Clin Pract 2019;17:12. DOI: 10.1186/s13053-019-0110-z.
30. The Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumors. Nature 2012;490:61–70. DOI: 10.1038/nature11412.
31. Huang R.S., Haberberger J., McGregor K. et al. Clinicopathologic and genomic landscape of breast carcinoma brain metastases. Available at: https://theoncologist.onlinelibrary.wiley.com/doi/10.1002/onco.13855. DOI: 10.1002/onco.13855.
32. Kanchi K.L., Johnson K.J., Lu C. et al. Integrated analysis of germline and somatic variants in ovarian cancer. Nat Commun 2014;5:3156. DOI: 10.1038/ncomms4156.
33. Sangha N., Wu R., Kuick R. et al. Neurofibromin 1 (NF1) defects are common in human ovarian serous carcinomas and co-occur with TP53 mutations. Neoplasia 2008;10(12):1362–72. DOI: 10.1593/neo.08784.
34. Qiao G., Jia X., Zhang Y., Chen B. Neurofibromin 1 expression is negatively correlated with malignancy and prognosis of epithelial ovarian cancer. Int J Clin Exp Pathol 2019;12(5):1702–12.
35. Welander J., Larsson C., Backdahl M. et al. Integrative genomics reveals frequent somatic NF1 mutations in sporadic pheochromacytomas. Hum Mol Genet 2012;21:5406–16. DOI: 10.1093/hmg/dds402.
36. Dombi E., Baldwin A., Marcus L. et al. Activity of selumetinib in neurofibromatosis type1-related plexiform neurofibromas. N Engl J Med 2016;375(26):2550–60. DOI: 10.1056/NEJMoa1605943.
37. Baldo F., Grasso A.G., Wiel L.C. et al. Selumetinib in the treatment of symptomatic intractable plexiform neurofibromas in neurofibromatosis type 1: a prospective case series with emphasis on side effects. Paediatr Drugs 2020;22(4):417–23. DOI: 10.1007/s40272-020-00399-y.
38. Gross A.M., Wolters P.L., Dombi E. et al. Selubetinib in children with inoperable plexiform neurofibromas. N Engl J Med 2020;382(15):1430–42. DOI: 10.1056/NEJMoa1912735.
39. Santo V.E., Passos J., Nzwalo H. et al. Selumetinib for plexiform neurofibromas in neurofibromatosis type 1: a single-institution experience. J Neurooncol 2020;147(2):459–63. DOI: 10.1007/s11060-020-03443-6.
40. Maertens O., Johnson B., Hollstein P. et al. Elucidating distinct roles for NF1 in melanomagenesis. Cancer Discrov 2013;3(3):338–49. DOI: 10.1158/2159-8290.CD-12-0313.
41. Whittaker S.R., Theurillat J.P., Allen E.V. et al. A genome-scale RNA interference screen implicates NF1 loss in resistance to RAF inhibition. Cancer Discov 2013;3(3):350–62. DOI: 10.1158/2159-8290.CD-12-0470.
42. Pearson A., Proszek P., Pascual J. et al. Inactivating NF1 Mutations are enriched in advanced breast cancer and contribute to endocrine therapy resistance. Clin Cancer Res 2020;26(3):608–22. DOI: 10.1158/1078-0432.CCR-18-4044.
43. De Bruin E.C., Cowell C., Warne P.H. et al. Reduced NF1 expression confers resistance to EGFR inhibition in lung cancer. Cancer Discov 2014;4(5):606–19. DOI: 10.1158/2159-8290.CD-13-0741.
44. Paschou M., Doxakis E. Neurofibromin 1 is a miRNA target in neurons. PLoS One 2012;7(10):346773. DOI: 10.1371/journal.pone.0046773.
45. Stark M.S., Bonazzi V.F., Boyle G.M. et al. MiR-514a regulates the tumour suppressor NF1 and modulates BRAFi sensitivity in melanoma. Oncotarget 2015;6(19):17753–63. DOI: 10.18632/oncotarget.3924.
46. Wang S., Ma G., Zhu H. et al. MiR-107 regulates tumor progression by targeting NF1 in gastric cancer. Sci Rep 2016;6:36531. DOI: 10.1038/srep36531.
47. Guo L., Li B., Yang J. et al. Fibroblastderived exosomal microRNA-369 potentiates migration and invasion of lung squamous cell carcinoma cells via NF1-mediated MAPK signaling pathway. Int J Mol Med 2020;46(2):595–608. DOI: 10.3892/ijmm.2020.4614.
48. Chen J., Cui J., Guo X. et al. Increased expression of miR-641 contributes to erlotinib resistance in non-small-cell lung cancer cells by targeting NF1. Cancer Med 2018;7(4):1394–1403. DOI: 10.1002/cam4.1326.
49. Zhu H., Yang J., Yang S. MicroRNA103a-3p potentiates chemoresistance to cisplatin in non-small cell lung carcinoma by targeting neurofibromatosis 1. Exp Ther Med 2020;19(3):1797–805. DOI: 10.3892/etm.2020.8418.
50. Li S., Li W., Chen G. et al. MiRNA-27a-3p induces temozolomide resistance in gliomas by inhibiting NF1 level. Am J Transl Res 2020;12(8):4749–56.
51. Garcia-Orti L., Crostobal I., Cirauqui C. et al. Integration of SNP and mRNA arrays with microRNA profiling reveals that MiR-370 is upregulated and targets NF1 in acute myeloid leukemia. PLoS One 2012;7(10):e47717. DOI: 10.1371/journal.pone.0047717.
52. Su J., Ruan S., Dai S. et al. NF1 regulates apoptosis in ovarian cancer cells by targeting MCL1 via miR-142-5p. Pharmacogenomics 2019;20(3):155–65. DOI: 10.2217/pgs-2018-0161.
53. Chai G., Liu N., Ma J. et al. MicroRNA-10b regulates tumorigenesis in neurofibromatosis type 1. Cancer Sci 2010;101(9):1997–2004. DOI: 10.1111/j.1349-7006.2010.01616.x.
54. Lu H., Liu P., Pang Q. MiR-27a-3p/miR27b-3p promotes neurofibromatosis type 1 via targeting of NF1. Available at: https:// link.springer.com/article/10.1007%2 Fs12031-020-01779-2. DOI: 10.1007/s12031-020-01779-2.
55. Wang M., Wang Z., Zhu X. et al. NFKB1-miR-612-FAIM2 pathway regulates tumorigenesis in neurofibromatosis type 1. In Vitro Cell Dev Biol Anim 2019;55(7):491–500. DOI: 10.1007/s11626-019-00370-3.
56. Na Y., Hall A., Choi K. et al. MicroRNA-155 contributes to plexiform neurofibroma growth downstream of MEK. Oncogene 2021;40:951–63. DOI: 10.1038/s41388-020-01581-9.
57. Hong A., Piva M., Liu S. et al. Durable suppression of acquired MEK inhibitor resistance in cancer by sequestering MEK from ERK and promoting antitumor T-cell immunity. Cancer Discov 2021;11(3):714–35. DOI: 10.1158/2159-8290.CD-20-0873.
58. Wang S., Liechty B., Patel S. et al. Programmed death ligand 1 expression and tumor infiltrating lymphocytes in neurofibromatosis type 1 and 2 associated tumors. J Neurooncol 2018;138(1):183–90. DOI: 10.1007/s11060-018-2788-6.
59. Kawachi Y., Maruyama H., Kshitsuka Y. et al. NF1 gene silencing induces upregulation of vascular endothelial growth factor expression in both Schwann and non-Schwann cells. Exp Dermatol 2013;22(4):262–5. DOI: 10.1111/exd.12115.
60. Theeler B.J., Ellezam B., Yust-Katz S. et al. Prolonged survival in adult neurofibromatosis type I patients with recurrent high-grade gliomas treated with bevacizumab. J Neurol 2014;261(8):1559–64. DOI: 10.1007/s00415-014-7292-0.
61. Walker J.A., Upadhyaya M. Emerging therapeutic targeting for neurofibromatosis. Expert Opin Ther Targets 2018;22(5):419–37. DOI: 10.1080/14728222.2018.1465931.
62. Cui X.W, Ren J.Y., Gu Y.H. et al. NF1, neurofibromin and gene therapy: Prospects of next-generation therapy. Curr Gene Ther 2020;20(2):100–8. DOI: 10.2174/1566523220666200806111451.
63. Keeling K.M., Xue X., Gunn G., Bedwell D.M. Therapeutics based on stop codon readthrough. Annu Rev Genomics Hum Genet 2014;15:371–94. DOI: 10.1146/annurev-genom-091212-153527.
64. Lee M.J., Hung S.H., Huang M.C. et al. Doxycycline potentiates antitumor effect of 5-aminolevulinic acid-mediated photodynamic therapy in malignant peripheral nerve sheath tumor cells. PLoS One 2017;12(5):e0178493. DOI: 10.1371/journal.pone.0178493.
65. Pros E., Fernandez-Rodriguez J., Canet B. et al. Antisense therapeutics for neurofibromatosis type 1 caused by deep intronic mutations. Hum Mutat 2009;30(3):454–62. DOI: 10.1002/humu.20933.
66. Choi G., Huang B., Pinarbasi E. et al. Genetically mediated Nf1 loss in mice promotes diverse radiation-induced tumors modeling second malignant neoplasms. Cancer Res 2012;72(24): 6425–34. DOI: 10.1158/0008-5472.
Review
For citations:
Mustafin R.N. The role of mutations in NF1 gene in sporadic carcinogenesis. Advances in Molecular Oncology. 2021;8(3):25-33. (In Russ.) https://doi.org/10.17650/2313-805X-2021-8-3-25-33