Preview

Успехи молекулярной онкологии

Расширенный поиск

Иммунология и перспективы иммунотерапии злокачественных глиом: использование факторов гуморального иммунитета

https://doi.org/10.17650/2313-805X-2021-8-4-21-28

Полный текст:

Аннотация

Глиомы высокой степени злокачественности – агрессивные опухоли центральной нервной системы. Стандартная химиолучевая терапия данных новообразований не является куративной опцией, поэтому попытки усиления и индивидуализации их лечения на сегодняшний день предполагают воздействие на патогенетические механизмы роста опухоли на клеточном и молекулярно-генетическом уровнях. Злокачественные глиомы, в первую очередь глиобластомы, являются «холодными» опухолями, в которых иммунный ответ и перитуморальное воспаление проявляются слабо. Это объясняется сниженной экспрессией неоантигенов опухолевыми клетками и низкой иммунореактивностью микроокружения. Клетки центральной нервной системы лишены молекул для хоминга лейкоцитов, а поверхностные соединения – ганглиозиды – оказывают прямое ингибирующее воздействие на CD178+-цитотоксические Т-лимфоциты. Это приводит к тому, что популяция лейкоцитов, инфильтрирующих опухоль, представлена в основном клетками, отрицательно регулирующими иммунный ответ (регуляторными (CD4+ CD25+ FOXP3+) T-лимфоцитами и макрофагами 2-го типа). Макрофаги 2-го типа ингибируют клеточный иммунный ответ, стимулируют неоангиогенез и создают условия для метастатического распространения клеток опухоли.

Интеграция в лечении опухолей центральной нервной системы иммунотерапевтических подходов, в том числе применение вакцин и моноклональных антител, является актуальной стратегией, основанной на биологических свойствах опухолевой ткани.

Об авторах

С. А. Кулева
ФГБОУ «Национальный медицинский исследовательский центр онкологии им. Н.Н. Петрова» Минздрава России; ФГБОУ ВО «Санкт-Петербургский государственный педиатрический медицинский университет» Минздрава России
Россия

Светлана Александровна Кулева

197758 Санкт-Петербург, пос. Песочный, ул. Ленинградская, 68
194100 Санкт-Петербург, ул. Литовская, 2



К. М. Борокшинова
ФГБОУ «Национальный медицинский исследовательский центр онкологии им. Н.Н. Петрова» Минздрава России
Россия

197758 Санкт-Петербург, пос. Песочный, ул. Ленинградская, 68



А. Е. Друй
ФГБОУ «Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России; ГАУЗ «Центр специализированных видов медицинской помощи «Институт медицинских клеточных технологий»
Россия

117997 Москва, ГСП-7, ул. Саморы Машела, 1
620026 Екатеринбург, ул. Карла Маркса, 22а



Список литературы

1. Harada M., Ishihara Y., Itoh K., Yamanaka R. Kinesin superfamily proteinderived peptides with the ability to induce glioma-reactive cytotoxic T lymphocytes in human leukocyte antigen-A24+ glioma patients. Oncol Rep 2007;17(3):629–36. DOI: 10.3892/or.17.3.629.

2. Hashiba T., Izumoto S., Kagawa N. et al. Expression of WT1 protein and correlation with cellular proliferation in glial tumors. Neurol Med Chir (Tokyo) 2007;47(4):165–70. DOI: 10.2176/nmc.47.165.

3. Hatano M., Eguchi J., Tatsumi T. et al. EphA2 as a glioma-associated antigen: a novel target for glioma vaccines. Neoplasia 2005;7(8):717–22. DOI: 10.1593/neo.05277.

4. Heimberger A.B., McGary E.C., Suki D. et al. Loss of the AP-2alpha transcription factor is associated with the grade of human gliomas. Clin Cancer Res 2005;11(1):267–72.

5. Jin L., Ge H., Long Y. et al. CD70, a novel target of CAR T-cell therapy for gliomas. Neuro Oncol 2018;20(1):55–65. DOI: 10.1093/neuonc/nox116.

6. Kuramoto T. Detection of MAGE-1 tumor antigen in brain tumor. Kurume Med J 1997;44(1):43–51. DOI: 10.2739/kurumemedj.44.43.

7. Liu G., Ying H., Zeng G. et al. HER-2, gp100, and MAGE-1 are expressed in human glioblastoma and recognized by cytotoxic T cells. Cancer Res 2004;64(14):4980–6. DOI: 10.1158/0008-5472.CAN-03-3504.

8. Liu H., Chen L., Liu J. et al. Co-delivery of tumor-derived exosomes with alpha-galactosylceramide on dendritic cell-based immunotherapy for glioblastoma. Cancer Lett 2017;411:182–90. DOI: 10.1016/j.canlet.2017.09.022.

9. Murayama K., Kobayashi T., Imaizumi T. Expression of the SART3 tumor-rejection antigen in brain tumors and induction of cytotoxic T lymphocytes by its peptides. J Immunother 2000;23(5):511–8. DOI: 10.1097/00002371-200009000-00001.

10. Nonaka Y., Tsuda N., Shichijo S. et al. Recognition of ADP-ribosylation factor 4-like by HLA-A2-restricted and tumor-reactive cytotoxic T lymphocytes from patients with brain tumors. Tissue Antigens 2002;60(4):319–27. DOI: 10.1034/j.1399-0039.2002.600406.x.

11. Okano F., Storkus W.J., Chambers W.H. et al. Identification of a novel HLA-A*0201-restricted, cytotoxic T lymphocyte epitope in a human glioma-associated antigen, interleukin 13 receptor alpha2 chain. Clin Cancer Res 2002;8(9):2851–5.

12. Schmitz M., Temme A., Senner V. et al. Identification of SOX2 as a novel glioma-associated antigen and potential target for T cell-based immunotherapy. Br J Cancer 2007;96(8):1293–301. DOI: 10.1038/sj.bjc.6603696.

13. Ueda R., Kinoshita E., Ito R. et al. Induction of protective and therapeutic antitumor immunity by a DNA vaccine with a glioma antigen, SOX6. Int J Cancer 2008;122(10):2274–9. DOI: 10.1002/ijc.23366.

14. Gan H.K., Lappas M., Cao D.X. et al. Targeting a unique EGFR epitope with monoclonal antibody 806 activates NF-kappaB and initiates tumour vascular normalization. J Cell Mol Med 2009;13(9B):3993–4001. DOI: 10.1111/j.1582-4934.2009.00783.x.

15. Chistiakov D.A., Chekhonin I.V., Gurina O.I. et al. Approaches to improve efficiency of dendritic cell-based therapy of high grade gliomas. Curr Pharm Des 2016;22(37):5738–51. DOI: 10.2174/1381612822666160719110618.

16. Nejo T., Matsushita H., Karasaki T. et al. Reduced neoantigen expression revealed by longitudinal multiomics as a possible immune evasion mechanism in glioma. Cancer Immunol Res 2019;7(7):1148–61. DOI: 10.1158/2326-6066.CIR-18-0599.

17. Nagyoszi P., Wilhelm I., Farkas A.E. et al. Expression and regulation of toll-like receptors in cerebral endothelial cells. Neurochem Int 2010;57(5):556–64. DOI: 10.1016/j.neuint.2010.07.002.

18. Daniels B.P., Holman D.W., Cruz-Orengo L. Viral pathogen-associated molecular patterns regulate blood-brain barrier integrity via competing innate cytokine signals. mBio 2014;5(5):e01476-14. DOI: 10.1128/mBio.01476-14.

19. Anirban G. Immune connection in glioma: fiction, fact and option, glioma, in glioma exploring its biology and practical relevance. In: Glioma – exploring its biology and practical relevance. Ed. by D.A. Ghosh. InTech, 2011. P. 305–324.

20. Flügel A., Schwaiger F.W., Neumann H. et al. Neuronal FasL induces cell death of encephalitogenic T lymphocytes. Brain Pathol 2000;10(3):353–64. DOI: 10.1111/j.1750-3639.2000.tb00267.x.

21. Szulzewsky F., Pelz A., Feng X. et al. Glioma-associated microglia/macrophages display an expression profile different from M1 and M2 polarization and highly express Gpnmb and Spp1. PLoS One 2015;10(2):e0116644. DOI: 10.1371/journal.pone.0116644.

22. Zhang M., Hutter G., Kahn S.A. AntiCD47 treatment stimulates phagocytosis of glioblastoma by M1 and M2 polarized macrophages and promotes M1 polarized macrophages in vivo. PLoS One 2016;11(4):e0153550. DOI: 10.1371/journal.pone.0153550.

23. Zhu C., Kros J.M., Cheng C., Mustafa D. The contribution of tumor-associated macrophages in glioma neo-angiogenesis and implications for anti-angiogenic strategies. Neuro Oncol 2017;19(11):1435–46. DOI: 10.1093/neuonc/nox081.

24. Chakraborty S., Filippi C.G., Wong T. et al. Superselective intraarterial cerebral infusion of cetuximab after osmotic blood/brain barrier disruption for recurrent malignant glioma: phase I study. J Neurooncol 2016;128(3):405–15. DOI: 10.1007/s11060-016-2099-8.

25. Kulason K.O., Schneider J.R., Chakraborty S. et al. Superselective intraarterial cerebral infusion of cetuximab with blood brain barrier disruption combined with Stupp Protocol for newly diagnosed glioblastoma. J Exp Ther Oncol 2018;12(3):223–9.

26. Blesa J.M., Molla S.B., Esparcia M.F. et al. Durable complete remission of a brainstem glioma treated with a combination of bevacizumab and cetuximab. Case Rep Oncol 2012;5(3):676–81. DOI: 10.1159/000341852.

27. Bode U., Massimino M., Bach F. et al. Nimotuzumab treatment of malignant gliomas. Exp Opin Biol Ther 2012;12(12):1649–59. DOI: 10.1517/14712598.2012.733367.

28. Ramos T.C., Figueredo J., Catala M. et al. Treatment of high-grade glioma patients with the humanized anti-epidermal growth factor receptor (EGFR) antibody h-R3: report from a phase I/II trial. Cancer Biol Ther 2006;5(4):375–9. DOI: 10.4161/cbt.5.4.2522.

29. Solomon M.T., Selva J.C., Figueredo J. et al. Radiotherapy plus nimotuzumab or placebo in the treatment of high grade glioma patients: results from a randomized, double blind trial. BMC Cancer 2013;13:299. DOI: 10.1186/1471-2407-13-299.

30. Johns T.G., McKay M.J., Cvrljevic A.N. et al. MAb 806 enhances the efficacy of ionizing radiation in glioma xenografts expressing the de2-7 epidermal growth factor receptor. Int J Radiat Oncol Biol Phys 2010;78(2):572–8. DOI: 10.1016/j.ijrobp.2010.03.027.

31. Jungbluth A.A., Stockert E., Huang H.J. et al. A monoclonal antibody recognizing human cancers with amplification/ overexpression of the human epidermal growth factor receptor. Proc Natl Acad Sci USA 2003;100(2):639–44. DOI: 10.1073/pnas.232686499.

32. Cao B., Su Y., Oskarsson M. et al. Neutralizing monoclonal antibodies to hepatocyte growth factor/scatter factor (HGF/SF) display antitumor activity in animal models Proc Natl Acad Sci USA 2001;98(13):7443–8. DOI: 10.1073/pnas.131200498.

33. Buchanan I.M., Scott T., Tandle A.T. et al. Radiosensitization of glioma cells by modulation of Met signalling with the hepatocyte growth factor neutralizing antibody, AMG102 J Cell Mol Med 2011;15(9):1999–2006. DOI: 10.1111/j.1582-4934.2010.01122.x.

34. Jun H.T., Sun J., Rex K. et al. AMG 102, a fully human anti-hepatocyte growth factor/scatter factor neutralizing antibody, enhances the efficacy of temozolomide or docetaxel in U-87 MG cells and xenografts. Clin Cancer Res 2007;13:6735–42. DOI: 10.1158/1078-0432.CCR-06-2969.

35. Martens T., Schmidt N.O., Eckerich C. et al. A novel one-armed anti-c-Met antibody inhibits glioblastoma growth in vivo. Clin Cancer Res 2006;12:6144–52. DOI: 10.1158/1078-0432.CCR-05-1418.

36. Kuramoto T. Detection of MAGE-1 tumor antigen in brain tumor. Kurume Med J 1997;44(1):43–51. DOI: 10.2739/kurumemedj.44.43.

37. Liu G., Ying H., Zeng G. et al. HER-2, gp100, and MAGE-1 are expressed in human glioblastoma and recognized by cytotoxic T cells. Cancer Res 2004;64(14):4980–6. DOI: 10.1158/0008-5472.CAN-03-3504.

38. Stupp R., Brada M., van den Bent M.J. et al. High-grade glioma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2014;3:iii93–101. DOI: 10.1093/annonc/mdu050.

39. Чехонин И.В., Леопольд А.В., Гурина О.И., Семенова А.В. Моноклональные антитела в терапии низкодифференцированных глиом. Вестник РАМН 2014;9–10:131–9.

40. Chamberlain M.C., Johnston S.K. Salvage therapy with single agent bevacizumab for recurrent glioblastoma. J Neurooncol 2010;96(2):259–69. DOI: 10.1007/s1106-0009-9957-6.

41. Nagane M., Nishikawa R., Narita Y. et al. Phase II study of single-agent bevacizumab in Japanese patients with recurrent malignant glioma. Jpn J Clin Oncol 2012;42(10):887–95. DOI: 10.1093/jjco/hys121.

42. Pope W.B., Lai A., Nghiemphu P. et al. MRI in patients with high-grade gliomas treated with bevacizumab and chemotherapy. Neurology 2006;66(8):1258–60. DOI: 10.1212/01.wnl.0000208958.29600.87.

43. Vredenburgh J.J., Desjardins A., Herndon J.E. et al. Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma. Clin Cancer Res 2007;13(4):1253–9. DOI: 10.1158/1078-0432.CCR-06-2309.

44. Lai A., Tran A., Nghiemphu P.L. et al. Phase II study of bevacizumab plus temozolomide during and after radiation therapy for patients with newly diagnosed glioblastoma multiforme. J Clin Oncol 2011;29(2):142–8. DOI: 10.1200/JCO.2010.30.2729.

45. Gilbert M.R., Dignam J.J., Armstrong T.S. et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 2014;370(8):699–708. DOI: 10.1056/NEJMoa1308573.

46. Liguigli W., Tomasello G., Toppo L. et al. Ramucirumab for metastatic gastric or gastroesophageal junction cancer: results and implications of the REGARD trial. Future Oncol 2014;10(9):1549–57. PMID: 25145426. DOI: 10.2217/fon.14.106.

47. Chiorean E.G., Sweeney C., Youssoufian H. et al. A phase I study of olaratumab, an anti-platelet-derived growth factor receptor alpha (PDGFRα) monoclonal antibody, in patients with advanced solid tumors. Cancer Chemother Pharmacol 2014;73(3):595–604. DOI: 10.1007/s00280-014-2389-9.

48. Girotti M.R., Salatino M., Dalotto-Moreno T., Rabinovich G.A. Sweetening the hallmarks of cancer: galectins as multifunctional mediators of tumor progression. J Exp Med 2020;217(2):e20182041. DOI: 10.1084/jem.20182041.

49. Batzke K., Büchel G., Hansen W., Schramm A. TrkB-target galectin-1 impairs immune activation and radiation responses in neuroblastoma: implications for tumour therapy. Int J Mol Sci 2018;19(3):718. DOI: 10.3390/ijms19030718.

50. Croci D.O., Salatino M., Rubinstein N. et al. Disrupting galectin-1 interactions with N-glycans suppresses hypoxia-driven angiogenesis and tumorigenesis in Kaposi’s sarcoma. J Exp Med 2012;209(11):1985–2000. DOI: 10.1084/jem.20111665.

51. Verschuere T., Toelen J., Maes W. et al. Glioma-derived galectin-1 regulates innate and adaptive antitumor immunity. Int J Cancer 2014;134(4):873–84. DOI: 10.1002/ijc.28426.

52. You X., Wu J., Wang Y. et al. Galectin-1 promotes vasculogenic mimicry in gastric adenocarcinoma via the Hedgehog/GLI signaling pathway. Aging (Albany NY) 2020;12(21):21837–53. DOI: 10.18632/aging.104000.

53. Górniak P., Wasylecka-Juszczyńska M., Ługowska I. et al. BRAF inhibition curtails IFN-gamma-inducible PD-L1 expression and upregulates the immunoregulatory protein galectin-1 in melanoma cells. Mol Oncol 2020;14(8):1817–32. DOI: 10.1002/1878-0261.12695.

54. Wang H., Lathia J.D., Wu Q. et al. Targeting interleukin 6 signaling suppresses glioma stem cell survival and tumor growth. Stem Cells 2009;27(10):2393–404. DOI: 10.1002/stem.188.

55. Lamano J.B., Lamano J.B., Li Y.D. et al. Glioblastoma-derived IL6 induces immunosuppressive peripheral myeloid cell PD-L1 and promotes tumor growth. Clin Cancer Res 2019;25(12):3643–57. DOI: 10.1158/1078-0432.CCR-182402.

56. Chen Q., Boire A., Jin X. et al. Carcinoma-astrocyte gap junctions promote brain metastasis by cGAMP transfer. Nature 2016;533(7604):493–8. DOI: 10.1038/nature18-268.

57. Honda S., Sadatomi D., Yamamura Y. et al. WP1066 suppresses macrophage cell death induced by inflammasome agonists independently of its inhibitory effect on STAT3. Cancer Sci 2017;108(3):520–7. DOI: 10.1111/cas.13154.

58. Ott M., Kassab C., Marisetty A. et al. Radiation with STAT3 blockade triggers dendritic cell-T cell Interactions in the glioma microenvironment and therapeutic efficacy. Clin Cancer Res 2020;26(18):4983–94. DOI: 10.1158/1078-0432.CCR-19-4092.

59. Roy L.O., Poirier M.B., Fortin D. Differential expression and clinical significance of transforming growth factor-beta isoforms in GBM tumors. Int J Mol Sci 2018;19(4):1113. DOI: 10.3390/ijms19041113.

60. Bigner D.D., Brown M., Coleman R.E. et al. Phase I studies of treatment of malignant gliomas and neoplastic meningitis with 131I-radiolabeled monoclonal antibodies anti-tenascin 81C6 and anti-chondroitin proteoglycan sulfate Me1-14 F (ab’)2-a preliminary report. J Neurooncol 1995;24(1):109–22. DOI: 10.1007/BF01052668.

61. Riva P., Arista A., Franceschi G. et al. Glioblastoma therapy by direct intralesional administration of I-131 radioiodine labeled antitenascin antibodies. Cell Biophys 1994;24–25:37–43. DOI: 10.1007/BF02789213.

62. Shlien A., Campbell B.B., de Borja R. et al. Combined hereditary and somatic mutations of replication error repair genes result in rapid onset of ultra-hypermutated cancers. Nat Genet 2015;47(3):257–62. DOI: 10.1038/ng.3202.

63. Bouffet E., Larouche V., Campbell B.B. et al. Immune checkpoint inhibition for hypermutant glioblastoma multiforme resulting from germline biallelic mismatch repair deficiency. J Clin Oncol 2016; 34(19):2206–11. DOI: 10.1200/JCO.2016.66.6552.

64. Reardon D.A., Brandes A.A., Omuro A. et al. Effect of nivolumab vs bevacizumab in patients with recurrent glioblastoma: the CheckMate 143 phase 3 randomized clinical trial. JAMA Oncol 2020;21:e201024. DOI: 10.1001/jamaoncol.2020.1024.

65. Hodges T.R., Ott M., Xiu J. et al. Mutational burden, immune checkpoint expression, and mismatch repair in glioma: implications for immune checkpoint immunotherapy. Neuro Oncol 2017;19(8):1047–57. DOI: 10.1093/neuonc/nox026.

66. Giles A.J., Hutchinson M.N.D., Sonnemann H.M. et al. Dexamethasone-induced immunosuppression: mechanisms and implications for immunotherapy. J Immunother Cancer 2018;6(1):51. DOI: 10.1186/s40425-018-0371-5.

67. Garg A.D., Vandenberk L., Woensel M. et al. Preclinical efficacy of immunecheckpoint monotherapy does not recapitulate corresponding biomarkers-based clinical predictions in glioblastoma. Oncoimmunology 2017;6(4):e1295903. DOI: 10.1080/2162402X.2017.1295903.

68. Berghoff A.S., Kiesel B., Widhalm G. et al. Programmed death ligand 1 expression and tumor-infiltrating lymphocytes in glioblastoma. Neuro Oncol 2015;17(8):1064–75. DOI: 10.1093/neuonc/nou307.

69. Lu Y., Ng A.H.C., Chow F.E. Resolution of tissue signatures of therapy response in patients with recurrent GBM treated with neoadjuvant anti-PD1. Nat Commun 2021;12(1):4031. DOI: 10.1038/s41467-021-24293-4.

70. Chistiakov D.A., Chekhonin I.V., Gurina O.I. et al. Approaches to improve efficiency of dendritic cell-based therapy of high grade gliomas. Curr Pharm Des 2016;22(37):5738–51. DOI: 10.2174/1381612822666160719110618.

71. Swartz A.M., Shen S.H., Salgado M.A. et al. Promising vaccines for treating glioblastoma. Expert Opin Biol Ther 2018;18(11):1159–70. PMID: 30281978. DOI: 10.1080/14712598.2018.1531846.

72. Yu J.S., Wheeler C.J., Zeltzer P.M. et al. Vaccination of malignant glioma patients with peptide-pulsed dendritic cells elicits systemic cytotoxicity and intracranial T-cell infiltration. Cancer Res 2001;61(3):842–7.

73. Weller M., Butowski N., Tran D.D. et al. Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomised, double-blind, international phase 3 trial. Lancet Oncol 2017;18(10):1373–85. DOI: 10.1016/S1470-2045(17)30517-X.

74. Molenaar R.J., Maciejewski J.P., Wilmink J.W., van Noorden C.J.F. Wild-type and mutated IDH1/2 enzymes and therapy responses. Oncogene 2018;37(15):1949–60. DOI: 10.1038/s41388-017-0077-z.

75. Platten M., Bunse L., Wick A. et al. A vaccine targeting mutant IDH1 in newly diagnosed glioma. Nature 2021;592(7854):463–8. DOI: 10.1038/s41586-021-03363-z.


Для цитирования:


Кулева С.А., Борокшинова К.М., Друй А.Е. Иммунология и перспективы иммунотерапии злокачественных глиом: использование факторов гуморального иммунитета. Успехи молекулярной онкологии. 2021;8(4):21-28. https://doi.org/10.17650/2313-805X-2021-8-4-21-28

For citation:


Kulyova S.A., Borokshinova K.M., Druy A.E. Immunology and prospects of immunotherapy against malignant gliomas: humoral immunity. Advances in Molecular Oncology. 2021;8(4):21-28. (In Russ.) https://doi.org/10.17650/2313-805X-2021-8-4-21-28

Просмотров: 38


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2313-805X (Print)
ISSN 2413-3787 (Online)
X