Immunology and prospects of immunotherapy against malignant gliomas: humoral immunity
https://doi.org/10.17650/2313-805X-2021-8-4-21-28
Abstract
High-grade gliomas are aggressive brain tumors with limited survival rates. To date the maximum of survival benefit of conventional therapeutic options has been already reached and innovative treatment strategies, based on tumor biology are urgently needed. Generally, malignant gliomas, including glioblastoma, are immunologically “cold: neoplasms, with weak anti-tumor immune response and peritumoral inflammation, caused by reduced expression of neoantigens by tumor cells and restricted immunoreactivity of the microenvironment. The reduced immunogenicity of brain structures is conditioned by the absence of homing molecules for white blood cells on them, as well as the suppression of activated (CD178+) T cells by brain gangliosides. The cell population infiltrating malignant glioma is impoverished with cytotoxic T cells (CD8+ FOXP3–) and oppositely enriched with regulatory T cells and type 2 macrophages (M2). An effective anti-glioma immune response is resulted in increasing the total number of tumor-infiltrating lymphocytes and the CD8+ cell content; switching the functional activity of macrophages from M2 to M1 type. Integration of immunotherapeutic technologies (vaccines and monoclonal antibodies) into treatment strategies of malignant gliomas is relevant and promising approach based on biological features of the tumor.
About the Authors
S. A. KulyovaRussian Federation
Svetlana Aleksandrovna Kuleva
68 Leningradskaya St., Pesochnyy Settlement, Saint Petersburg 197758
2 Litovskaya St., St. Petersburg 194100
K. M. Borokshinova
Russian Federation
68 Leningradskaya St., Pesochnyy Settlement, Saint Petersburg 197758
A. E. Druy
Russian Federation
1 Samory Mashela St., GSP-7, Moscow 117997
22a Karl Marks St., Yekaterinburg 620026
References
1. Harada M., Ishihara Y., Itoh K., Yamanaka R. Kinesin superfamily proteinderived peptides with the ability to induce glioma-reactive cytotoxic T lymphocytes in human leukocyte antigen-A24+ glioma patients. Oncol Rep 2007;17(3):629–36. DOI: 10.3892/or.17.3.629.
2. Hashiba T., Izumoto S., Kagawa N. et al. Expression of WT1 protein and correlation with cellular proliferation in glial tumors. Neurol Med Chir (Tokyo) 2007;47(4):165–70. DOI: 10.2176/nmc.47.165.
3. Hatano M., Eguchi J., Tatsumi T. et al. EphA2 as a glioma-associated antigen: a novel target for glioma vaccines. Neoplasia 2005;7(8):717–22. DOI: 10.1593/neo.05277.
4. Heimberger A.B., McGary E.C., Suki D. et al. Loss of the AP-2alpha transcription factor is associated with the grade of human gliomas. Clin Cancer Res 2005;11(1):267–72.
5. Jin L., Ge H., Long Y. et al. CD70, a novel target of CAR T-cell therapy for gliomas. Neuro Oncol 2018;20(1):55–65. DOI: 10.1093/neuonc/nox116.
6. Kuramoto T. Detection of MAGE-1 tumor antigen in brain tumor. Kurume Med J 1997;44(1):43–51. DOI: 10.2739/kurumemedj.44.43.
7. Liu G., Ying H., Zeng G. et al. HER-2, gp100, and MAGE-1 are expressed in human glioblastoma and recognized by cytotoxic T cells. Cancer Res 2004;64(14):4980–6. DOI: 10.1158/0008-5472.CAN-03-3504.
8. Liu H., Chen L., Liu J. et al. Co-delivery of tumor-derived exosomes with alpha-galactosylceramide on dendritic cell-based immunotherapy for glioblastoma. Cancer Lett 2017;411:182–90. DOI: 10.1016/j.canlet.2017.09.022.
9. Murayama K., Kobayashi T., Imaizumi T. Expression of the SART3 tumor-rejection antigen in brain tumors and induction of cytotoxic T lymphocytes by its peptides. J Immunother 2000;23(5):511–8. DOI: 10.1097/00002371-200009000-00001.
10. Nonaka Y., Tsuda N., Shichijo S. et al. Recognition of ADP-ribosylation factor 4-like by HLA-A2-restricted and tumor-reactive cytotoxic T lymphocytes from patients with brain tumors. Tissue Antigens 2002;60(4):319–27. DOI: 10.1034/j.1399-0039.2002.600406.x.
11. Okano F., Storkus W.J., Chambers W.H. et al. Identification of a novel HLA-A*0201-restricted, cytotoxic T lymphocyte epitope in a human glioma-associated antigen, interleukin 13 receptor alpha2 chain. Clin Cancer Res 2002;8(9):2851–5.
12. Schmitz M., Temme A., Senner V. et al. Identification of SOX2 as a novel glioma-associated antigen and potential target for T cell-based immunotherapy. Br J Cancer 2007;96(8):1293–301. DOI: 10.1038/sj.bjc.6603696.
13. Ueda R., Kinoshita E., Ito R. et al. Induction of protective and therapeutic antitumor immunity by a DNA vaccine with a glioma antigen, SOX6. Int J Cancer 2008;122(10):2274–9. DOI: 10.1002/ijc.23366.
14. Gan H.K., Lappas M., Cao D.X. et al. Targeting a unique EGFR epitope with monoclonal antibody 806 activates NF-kappaB and initiates tumour vascular normalization. J Cell Mol Med 2009;13(9B):3993–4001. DOI: 10.1111/j.1582-4934.2009.00783.x.
15. Chistiakov D.A., Chekhonin I.V., Gurina O.I. et al. Approaches to improve efficiency of dendritic cell-based therapy of high grade gliomas. Curr Pharm Des 2016;22(37):5738–51. DOI: 10.2174/1381612822666160719110618.
16. Nejo T., Matsushita H., Karasaki T. et al. Reduced neoantigen expression revealed by longitudinal multiomics as a possible immune evasion mechanism in glioma. Cancer Immunol Res 2019;7(7):1148–61. DOI: 10.1158/2326-6066.CIR-18-0599.
17. Nagyoszi P., Wilhelm I., Farkas A.E. et al. Expression and regulation of toll-like receptors in cerebral endothelial cells. Neurochem Int 2010;57(5):556–64. DOI: 10.1016/j.neuint.2010.07.002.
18. Daniels B.P., Holman D.W., Cruz-Orengo L. Viral pathogen-associated molecular patterns regulate blood-brain barrier integrity via competing innate cytokine signals. mBio 2014;5(5):e01476-14. DOI: 10.1128/mBio.01476-14.
19. Anirban G. Immune connection in glioma: fiction, fact and option, glioma, in glioma exploring its biology and practical relevance. In: Glioma – exploring its biology and practical relevance. Ed. by D.A. Ghosh. InTech, 2011. P. 305–324.
20. Flügel A., Schwaiger F.W., Neumann H. et al. Neuronal FasL induces cell death of encephalitogenic T lymphocytes. Brain Pathol 2000;10(3):353–64. DOI: 10.1111/j.1750-3639.2000.tb00267.x.
21. Szulzewsky F., Pelz A., Feng X. et al. Glioma-associated microglia/macrophages display an expression profile different from M1 and M2 polarization and highly express Gpnmb and Spp1. PLoS One 2015;10(2):e0116644. DOI: 10.1371/journal.pone.0116644.
22. Zhang M., Hutter G., Kahn S.A. AntiCD47 treatment stimulates phagocytosis of glioblastoma by M1 and M2 polarized macrophages and promotes M1 polarized macrophages in vivo. PLoS One 2016;11(4):e0153550. DOI: 10.1371/journal.pone.0153550.
23. Zhu C., Kros J.M., Cheng C., Mustafa D. The contribution of tumor-associated macrophages in glioma neo-angiogenesis and implications for anti-angiogenic strategies. Neuro Oncol 2017;19(11):1435–46. DOI: 10.1093/neuonc/nox081.
24. Chakraborty S., Filippi C.G., Wong T. et al. Superselective intraarterial cerebral infusion of cetuximab after osmotic blood/brain barrier disruption for recurrent malignant glioma: phase I study. J Neurooncol 2016;128(3):405–15. DOI: 10.1007/s11060-016-2099-8.
25. Kulason K.O., Schneider J.R., Chakraborty S. et al. Superselective intraarterial cerebral infusion of cetuximab with blood brain barrier disruption combined with Stupp Protocol for newly diagnosed glioblastoma. J Exp Ther Oncol 2018;12(3):223–9.
26. Blesa J.M., Molla S.B., Esparcia M.F. et al. Durable complete remission of a brainstem glioma treated with a combination of bevacizumab and cetuximab. Case Rep Oncol 2012;5(3):676–81. DOI: 10.1159/000341852.
27. Bode U., Massimino M., Bach F. et al. Nimotuzumab treatment of malignant gliomas. Exp Opin Biol Ther 2012;12(12):1649–59. DOI: 10.1517/14712598.2012.733367.
28. Ramos T.C., Figueredo J., Catala M. et al. Treatment of high-grade glioma patients with the humanized anti-epidermal growth factor receptor (EGFR) antibody h-R3: report from a phase I/II trial. Cancer Biol Ther 2006;5(4):375–9. DOI: 10.4161/cbt.5.4.2522.
29. Solomon M.T., Selva J.C., Figueredo J. et al. Radiotherapy plus nimotuzumab or placebo in the treatment of high grade glioma patients: results from a randomized, double blind trial. BMC Cancer 2013;13:299. DOI: 10.1186/1471-2407-13-299.
30. Johns T.G., McKay M.J., Cvrljevic A.N. et al. MAb 806 enhances the efficacy of ionizing radiation in glioma xenografts expressing the de2-7 epidermal growth factor receptor. Int J Radiat Oncol Biol Phys 2010;78(2):572–8. DOI: 10.1016/j.ijrobp.2010.03.027.
31. Jungbluth A.A., Stockert E., Huang H.J. et al. A monoclonal antibody recognizing human cancers with amplification/ overexpression of the human epidermal growth factor receptor. Proc Natl Acad Sci USA 2003;100(2):639–44. DOI: 10.1073/pnas.232686499.
32. Cao B., Su Y., Oskarsson M. et al. Neutralizing monoclonal antibodies to hepatocyte growth factor/scatter factor (HGF/SF) display antitumor activity in animal models Proc Natl Acad Sci USA 2001;98(13):7443–8. DOI: 10.1073/pnas.131200498.
33. Buchanan I.M., Scott T., Tandle A.T. et al. Radiosensitization of glioma cells by modulation of Met signalling with the hepatocyte growth factor neutralizing antibody, AMG102 J Cell Mol Med 2011;15(9):1999–2006. DOI: 10.1111/j.1582-4934.2010.01122.x.
34. Jun H.T., Sun J., Rex K. et al. AMG 102, a fully human anti-hepatocyte growth factor/scatter factor neutralizing antibody, enhances the efficacy of temozolomide or docetaxel in U-87 MG cells and xenografts. Clin Cancer Res 2007;13:6735–42. DOI: 10.1158/1078-0432.CCR-06-2969.
35. Martens T., Schmidt N.O., Eckerich C. et al. A novel one-armed anti-c-Met antibody inhibits glioblastoma growth in vivo. Clin Cancer Res 2006;12:6144–52. DOI: 10.1158/1078-0432.CCR-05-1418.
36. Kuramoto T. Detection of MAGE-1 tumor antigen in brain tumor. Kurume Med J 1997;44(1):43–51. DOI: 10.2739/kurumemedj.44.43.
37. Liu G., Ying H., Zeng G. et al. HER-2, gp100, and MAGE-1 are expressed in human glioblastoma and recognized by cytotoxic T cells. Cancer Res 2004;64(14):4980–6. DOI: 10.1158/0008-5472.CAN-03-3504.
38. Stupp R., Brada M., van den Bent M.J. et al. High-grade glioma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2014;3:iii93–101. DOI: 10.1093/annonc/mdu050.
39. Chekhov I.V., Leopold A.V., Gurina O.I., Semenova A.V. Monoclonal antibodies in the therapy of low-grade gliomas. Vestnik Rossijskoj Akademii Nauk = Annals of the Russian Academy of Medical Sciences 2014;9–10:131–9. (In Russ.)
40. Chamberlain M.C., Johnston S.K. Salvage therapy with single agent bevacizumab for recurrent glioblastoma. J Neurooncol 2010;96(2):259–69. DOI: 10.1007/s1106-0009-9957-6.
41. Nagane M., Nishikawa R., Narita Y. et al. Phase II study of single-agent bevacizumab in Japanese patients with recurrent malignant glioma. Jpn J Clin Oncol 2012;42(10):887–95. DOI: 10.1093/jjco/hys121.
42. Pope W.B., Lai A., Nghiemphu P. et al. MRI in patients with high-grade gliomas treated with bevacizumab and chemotherapy. Neurology 2006;66(8):1258–60. DOI: 10.1212/01.wnl.0000208958.29600.87.
43. Vredenburgh J.J., Desjardins A., Herndon J.E. et al. Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma. Clin Cancer Res 2007;13(4):1253–9. DOI: 10.1158/1078-0432.CCR-06-2309.
44. Lai A., Tran A., Nghiemphu P.L. et al. Phase II study of bevacizumab plus temozolomide during and after radiation therapy for patients with newly diagnosed glioblastoma multiforme. J Clin Oncol 2011;29(2):142–8. DOI: 10.1200/JCO.2010.30.2729.
45. Gilbert M.R., Dignam J.J., Armstrong T.S. et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 2014;370(8):699–708. DOI: 10.1056/NEJMoa1308573.
46. Liguigli W., Tomasello G., Toppo L. et al. Ramucirumab for metastatic gastric or gastroesophageal junction cancer: results and implications of the REGARD trial. Future Oncol 2014;10(9):1549–57. PMID: 25145426. DOI: 10.2217/fon.14.106.
47. Chiorean E.G., Sweeney C., Youssoufian H. et al. A phase I study of olaratumab, an anti-platelet-derived growth factor receptor alpha (PDGFRα) monoclonal antibody, in patients with advanced solid tumors. Cancer Chemother Pharmacol 2014;73(3):595–604. DOI: 10.1007/s00280-014-2389-9.
48. Girotti M.R., Salatino M., Dalotto-Moreno T., Rabinovich G.A. Sweetening the hallmarks of cancer: galectins as multifunctional mediators of tumor progression. J Exp Med 2020;217(2):e20182041. DOI: 10.1084/jem.20182041.
49. Batzke K., Büchel G., Hansen W., Schramm A. TrkB-target galectin-1 impairs immune activation and radiation responses in neuroblastoma: implications for tumour therapy. Int J Mol Sci 2018;19(3):718. DOI: 10.3390/ijms19030718.
50. Croci D.O., Salatino M., Rubinstein N. et al. Disrupting galectin-1 interactions with N-glycans suppresses hypoxia-driven angiogenesis and tumorigenesis in Kaposi’s sarcoma. J Exp Med 2012;209(11):1985–2000. DOI: 10.1084/jem.20111665.
51. Verschuere T., Toelen J., Maes W. et al. Glioma-derived galectin-1 regulates innate and adaptive antitumor immunity. Int J Cancer 2014;134(4):873–84. DOI: 10.1002/ijc.28426.
52. You X., Wu J., Wang Y. et al. Galectin-1 promotes vasculogenic mimicry in gastric adenocarcinoma via the Hedgehog/GLI signaling pathway. Aging (Albany NY) 2020;12(21):21837–53. DOI: 10.18632/aging.104000.
53. Górniak P., Wasylecka-Juszczyńska M., Ługowska I. et al. BRAF inhibition curtails IFN-gamma-inducible PD-L1 expression and upregulates the immunoregulatory protein galectin-1 in melanoma cells. Mol Oncol 2020;14(8):1817–32. DOI: 10.1002/1878-0261.12695.
54. Wang H., Lathia J.D., Wu Q. et al. Targeting interleukin 6 signaling suppresses glioma stem cell survival and tumor growth. Stem Cells 2009;27(10):2393–404. DOI: 10.1002/stem.188.
55. Lamano J.B., Lamano J.B., Li Y.D. et al. Glioblastoma-derived IL6 induces immunosuppressive peripheral myeloid cell PD-L1 and promotes tumor growth. Clin Cancer Res 2019;25(12):3643–57. DOI: 10.1158/1078-0432.CCR-182402.
56. Chen Q., Boire A., Jin X. et al. Carcinoma-astrocyte gap junctions promote brain metastasis by cGAMP transfer. Nature 2016;533(7604):493–8. DOI: 10.1038/nature18-268.
57. Honda S., Sadatomi D., Yamamura Y. et al. WP1066 suppresses macrophage cell death induced by inflammasome agonists independently of its inhibitory effect on STAT3. Cancer Sci 2017;108(3):520–7. DOI: 10.1111/cas.13154.
58. Ott M., Kassab C., Marisetty A. et al. Radiation with STAT3 blockade triggers dendritic cell-T cell Interactions in the glioma microenvironment and therapeutic efficacy. Clin Cancer Res 2020;26(18):4983–94. DOI: 10.1158/1078-0432.CCR-19-4092.
59. Roy L.O., Poirier M.B., Fortin D. Differential expression and clinical significance of transforming growth factor-beta isoforms in GBM tumors. Int J Mol Sci 2018;19(4):1113. DOI: 10.3390/ijms19041113.
60. Bigner D.D., Brown M., Coleman R.E. et al. Phase I studies of treatment of malignant gliomas and neoplastic meningitis with 131I-radiolabeled monoclonal antibodies anti-tenascin 81C6 and anti-chondroitin proteoglycan sulfate Me1-14 F (ab’)2-a preliminary report. J Neurooncol 1995;24(1):109–22. DOI: 10.1007/BF01052668.
61. Riva P., Arista A., Franceschi G. et al. Glioblastoma therapy by direct intralesional administration of I-131 radioiodine labeled antitenascin antibodies. Cell Biophys 1994;24–25:37–43. DOI: 10.1007/BF02789213.
62. Shlien A., Campbell B.B., de Borja R. et al. Combined hereditary and somatic mutations of replication error repair genes result in rapid onset of ultra-hypermutated cancers. Nat Genet 2015;47(3):257–62. DOI: 10.1038/ng.3202.
63. Bouffet E., Larouche V., Campbell B.B. et al. Immune checkpoint inhibition for hypermutant glioblastoma multiforme resulting from germline biallelic mismatch repair deficiency. J Clin Oncol 2016; 34(19):2206–11. DOI: 10.1200/JCO.2016.66.6552.
64. Reardon D.A., Brandes A.A., Omuro A. et al. Effect of nivolumab vs bevacizumab in patients with recurrent glioblastoma: the CheckMate 143 phase 3 randomized clinical trial. JAMA Oncol 2020;21:e201024. DOI: 10.1001/jamaoncol.2020.1024.
65. Hodges T.R., Ott M., Xiu J. et al. Mutational burden, immune checkpoint expression, and mismatch repair in glioma: implications for immune checkpoint immunotherapy. Neuro Oncol 2017;19(8):1047–57. DOI: 10.1093/neuonc/nox026.
66. Giles A.J., Hutchinson M.N.D., Sonnemann H.M. et al. Dexamethasone-induced immunosuppression: mechanisms and implications for immunotherapy. J Immunother Cancer 2018;6(1):51. DOI: 10.1186/s40425-018-0371-5.
67. Garg A.D., Vandenberk L., Woensel M. et al. Preclinical efficacy of immunecheckpoint monotherapy does not recapitulate corresponding biomarkers-based clinical predictions in glioblastoma. Oncoimmunology 2017;6(4):e1295903. DOI: 10.1080/2162402X.2017.1295903.
68. Berghoff A.S., Kiesel B., Widhalm G. et al. Programmed death ligand 1 expression and tumor-infiltrating lymphocytes in glioblastoma. Neuro Oncol 2015;17(8):1064–75. DOI: 10.1093/neuonc/nou307.
69. Lu Y., Ng A.H.C., Chow F.E. Resolution of tissue signatures of therapy response in patients with recurrent GBM treated with neoadjuvant anti-PD1. Nat Commun 2021;12(1):4031. DOI: 10.1038/s41467-021-24293-4.
70. Chistiakov D.A., Chekhonin I.V., Gurina O.I. et al. Approaches to improve efficiency of dendritic cell-based therapy of high grade gliomas. Curr Pharm Des 2016;22(37):5738–51. DOI: 10.2174/1381612822666160719110618.
71. Swartz A.M., Shen S.H., Salgado M.A. et al. Promising vaccines for treating glioblastoma. Expert Opin Biol Ther 2018;18(11):1159–70. PMID: 30281978. DOI: 10.1080/14712598.2018.1531846.
72. Yu J.S., Wheeler C.J., Zeltzer P.M. et al. Vaccination of malignant glioma patients with peptide-pulsed dendritic cells elicits systemic cytotoxicity and intracranial T-cell infiltration. Cancer Res 2001;61(3):842–7.
73. Weller M., Butowski N., Tran D.D. et al. Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomised, double-blind, international phase 3 trial. Lancet Oncol 2017;18(10):1373–85. DOI: 10.1016/S1470-2045(17)30517-X.
74. Molenaar R.J., Maciejewski J.P., Wilmink J.W., van Noorden C.J.F. Wild-type and mutated IDH1/2 enzymes and therapy responses. Oncogene 2018;37(15):1949–60. DOI: 10.1038/s41388-017-0077-z.
75. Platten M., Bunse L., Wick A. et al. A vaccine targeting mutant IDH1 in newly diagnosed glioma. Nature 2021;592(7854):463–8. DOI: 10.1038/s41586-021-03363-z.
Review
For citations:
Kulyova S.A., Borokshinova K.M., Druy A.E. Immunology and prospects of immunotherapy against malignant gliomas: humoral immunity. Advances in Molecular Oncology. 2021;8(4):21-28. (In Russ.) https://doi.org/10.17650/2313-805X-2021-8-4-21-28