Preview

Успехи молекулярной онкологии

Расширенный поиск

Механизм развития посттравматических глиом

https://doi.org/10.17650/2313-805X-2021-8-4-29-41

Полный текст:

Аннотация

Глиомы являются наиболее распространенными первичными опухолями центральной нервной системы. Их агрессивная форма – глиобластомы – характеризуются неблагоприятным прогнозом и высокой частотой рецидивов. Считается, что предшествующая черепно-мозговая травма служит одним из возможных факторов последующего развития глиальных опухолей головного мозга. Ряд авторов предложили критерии установления возможной причинно-следственной связи между черепно-мозговой травмой и глиомами. Однако фактическая роль предшествующей травмы мозга в патогенезе данного типа опухолей все еще остается предметом дискуссий. Было высказано предположение, что травматические повреждения вызывают активный и продолжительный воспалительный процесс. При этом нарушается проницаемость гематоэнцефалического барьера, что приводит к воздействию на ткани головного мозга канцерогенных (токсичных) веществ, различных факторов роста или клеток иммунной системы, циркулирующих в кровотоке. В результате может возникнуть злокачественная трансформация глиальных клеток. Эта гипотеза подтверждается сообщениями о менингиомах головного мозга, расположенных рядом с посттравматическими оболочечно-мозговыми рубцами. В данной работе мы попытаемся выяснить потенциальную связь между черепно-мозговой травмой и формированием глиальных опухолей головного мозга.

Об авторах

И. Ф. Гареев
ФГБУ «Федеральный центр нейрохирургии» Минздрава России
Россия

Ильгиз Фанилевич Гареев

625032 Тюмень, ул. 4-й км Червишевского тракта, 5



Ю. Г. Филиппов
ФГБОУ ВО «Башкирский государственный медицинский университет» Минздрава России
Россия

450008 Уфа, ул. Ленина, 3



О. А. Бейлерли
ФГБУ «Федеральный центр нейрохирургии» Минздрава России
Россия

625032 Тюмень, ул. 4-й км Червишевского тракта, 5



А. А. Суфианов
ФГБУ «Федеральный центр нейрохирургии» Минздрава России; ФГАОУ ВО Первый Московский государственный медицинский университет им. И.М. Сеченова Минздрава России
Россия

625032 Тюмень, ул. 4-й км Червишевского тракта, 5
119991 Москва, ул. Трубецкая, 8, стр. 2



А. В. Тюрин
ГБУЗ «Республиканская клиническая больница им. Г.Г. Куватова»
Россия

450005 Уфа, ул. Достоевского, 132



У. Ф. Мухаметов
ГБУЗ «Республиканская клиническая больница им. Г.Г. Куватова»
Россия

450005 Уфа, ул. Достоевского, 132



Guang Yang
Первый аффилированный госпиталь Харбинского медицинского университета
Китай

Харбин 150001, Провинция Хэйлунцзян



А. Т. Бейлерли
ФГБОУ ВО «Башкирский государственный медицинский университет» Минздрава России
Россия

450008 Уфа, ул. Ленина, 3



Список литературы

1. Soni N., Priya S., Bathla G. Texture analysis in cerebral gliomas: a review of the literature. Am J Neuroradiol 2019;40(6):928–34. DOI: 10.3174/ajnr.A6075.

2. Malzkorn B., Reifenberger G. Integrated diagnostics of diffuse astrocytic and oligodendroglial tumors. Pathologe 2019;40(Suppl 1):9–17. DOI: 10.1007/s00292-019-0581-8.

3. Wood M.D., Halfpenny A.M., Moore S.R. Applications of molecular neurooncology – a review of diffuse glioma integrated diagnosis and emerging molecular entities. Diagn Pathol 2019;14(1):29. DOI: 10.1186/s13000-019-0802-8.

4. Ewing J. The Bulkley Lectur. The modern attitude toward traumatic cancer. Bull New York Academy Med 1935;11:281–333.

5. Zulch K.J., Meinel H.D. The biology of brain tumours. In: Tumours of the brain and skull. Part I. Handbook of Clinical Neurology. Vol. 16. Ed. By P.J. Vinkin, G.W. Bruyn. Amsterdam: North Holland, 1974. Pp. 1–56.

6. Manuelidis E.E. Glioma in trauma. In: Pathology of the Nervous System. Ed. by J. Minckler. Vol. 2. New York: McGraw-Hill, 1978. Pp. 2237–40.

7. Moorthy R.K., Rajshekhar V. Development of glioblastoma multiforme following traumatic cerebral contusion: case report and review of literature. Surg Neurol 2001;61(2):180–4. DOI: 10.1016/s0090-3019(03)00423-3.

8. Monteiro G.T., Pereira R.A., Koifman R.J., Koifman S. Head injury and brain tumours in adults: A case-control study in Rio de Janeiro, Brazil. Eur J Cancer 2006;42(7):917–21. DOI: 10.1016/j.ejca.2005.11.028.

9. Munch T.N., Gørtz S., Wohlfahrt J., Melbye M. The long-term risk of malignant astrocytic tumors after structural brain injury – a nationwide cohort study. Neuro Oncol 2015;17(5):718–24. DOI: 10.1093/neuonc/nou312.

10. Morantz R.A., Shain W. Trauma and brain tumours: an experimental study. Neurosurgery 1978;3:181–6.

11. Brenner M. Role of GFAP in CNS injuries. Neurosci Lett 2014;565:7–13. DOI: 10.1016/j.neulet.2014.01.055.

12. Zhang L., Zhang W.P., Hu H. et al. Expression patterns of 5-lipoxygenase in human brain with traumatic injury and astrocytoma. Neuropathology 2006;26(2):99–106. DOI: 10.1111/j.1440-1789.2006.00658.x.

13. Härtig W., Michalski D., Seeger G. et al. Impact of 5-lipoxygenase inhibitors on the spatiotemporal distribution of inflammatory cells and neuronal COX-2 expression following experimental traumatic brain injury in rats. Brain Res 2013;1498:69–84. DOI: 10.1016/j.brainres.2012.12.022.

14. Nathoo N., Prayson R.A., Bondar J. et al. Increased expression of 5-lipoxygenase in high-grade astrocytomas. Neurosurgery 2006;58(2):347–5. DOI: 10.1227/01.NEU.0000195096.43258.94.

15. Ishii K., Zaitsu M., Yonemitsu N. et al. 5-lipoxygenase pathway promotes cell proliferation in human glioma cell lines. Clin Neuropathol 2009;28(6):445–52. DOI: 10.5414/npp28445.

16. Tyagi V., Theobald J., Barger J. et al. Traumatic brain injury and subsequent glioblastoma development: Review of the literature and case reports. Surg Neurol Int 2016;7:78. DOI: 10.4103/2152-7806.189296.

17. Coskun S., Coskun A., Gursan N., Aydin M.D. Post-traumatic glioblastoma multiforme: a case report. Eurasian J Med 2011;43(1):50–3. DOI: 10.5152/eajm.2011.10.

18. Juškys R., Chomanskis Ž. Glioblastoma following traumatic brain injury: case report and literature review. Cureus 2020;12(5):e8019. DOI: 10.7759/cureus.8019.

19. Zhou B., Liu W. Post-traumatic glioma: report of one case and review of the literature. Int J Med Sci 2010;7(5):248–50. DOI: 10.7150/ijms.7.248.

20. Spallone A., Izzo C., Orlandi A. Posttraumatic glioma: report of a case. Case Rep Oncol 2013;6(2):403–9. DOI: 10.1159/000354340.

21. Monteiro G.T., Pereira R.A., Koifman R.J., Koifman S. Head injury and brain tumours in adults: a case-control study in Rio de Janeiro, Brazil. Eur J Cancer 2006;42(7):917–21. DOI: 10.1016/j.ejca.2005.11.028.

22. Nygren C., Adami J., Ye W., Bellocco R. Primary brain tumors following traumatic brain injury – a population-based cohort study in Sweden. Cancer Causes Control 2001;12(8):733–7. DOI: 10.1023/A:10112276172568.8.

23. Chen Y.H., Keller J.J., Kang J.H., Lin H.C. Association between traumatic brain injury and the subsequent risk of brain cancer. J Neurotrauma 2012;29(7):1328–33. DOI: 10.1089/neu.2011.22357.

24. Munch T.N., Gørtz S., Wohlfahrt J., Melbye M. The long-term risk of malignant astrocytic tumors after structural brain injury – a nationwide cohort study. Neuro Oncol 2015;17(5):718–24. DOI: 10.1093/neuonc/nou3126.

25. Han Z., Du Y., Qi H., Yin W. Post-traumatic malignant glioma in a pregnant woman: case report and review of the literature. Neurol Med Chir (Tokyo) 2013;53(9):630–4. DOI: 10.2176/nmc.cr2013-0029.

26. Anselmi E., Vallisa D., Bertè R. et al. Post-traumatic glioma: report of two cases. Tumori 2006;92(2):175–7.

27. Hirsiger S., Simmen H.P., Werner C.M. et al. Danger signals activating the immune response after trauma. Mediators Inflamm 2012;315941. DOI: 10.1155/2012/315941.

28. Jha R.M., Kochanek P.M., Simard JM. Pathophysiology and treatment of cerebral edema in traumatic brain injury. Neuropharmacology 2019;145(Pt.B):230–246. DOI: 10.1016/j.neuropharm.2018.08.004.

29. Wofford K.L., Loane D.J., Cullen D.K. Acute drivers of neuroinflammation in traumatic brain injury. Neural Regen Res 2019;14(9):1481–9. DOI: 10.4103/1673-5374.255958.

30. Xu B., Yu D.M., Liu F.S. Effect of siRNA induced inhibition of IL 6 expression in rat cerebral gliocytes on cerebral edema following traumatic brain injury. Mol Med Rep 2014;10(4):1863–8. DOI: 10.3892/mmr.2014.2462.

31. Cho A., McKelvey K.J., Lee A., Hudson A.L. The intertwined fates of inflammation and coagulation in glioma. Mamm Genome 2018;29(11–12):806–16. DOI: 10.1007/s00335-018-9761-8.

32. Neagu M., Constantin C., Caruntu C. et al. Inflammation: a key process in skin tumorigenesis. Oncol Lett 2019;17(5):4068–84. DOI: 10.3892/ol.2018.9735.

33. Needham E.J., Helmy A., Zanier E.R. et al. The immunological response to traumatic brain injury. J Neuroimmunol 2019;332:112–25. DOI: 10.1016/j.jneuroim.2019.04.005.

34. Elder G.A., Ehrlich M.E., Gandy S. Relationship of traumatic brain injury to chronic mental health problems and dementia in military veterans. Neurosci Lett 2019;707:134294. DOI: 10.1016/j.neulet.2019.134294.

35. Clark D.P.Q., Perreau V.M., Shultz S.R. et al. Inflammation in traumatic brain injury: roles for toxic A1 astrocytes and microglial-astrocytic crosstalk. Neurochem Res 2019;44(6):1410–24. DOI: 10.1007/s11064-019-02721-8.

36. Smith C., Gentleman S.M., Leclercq P.D. et al. The neuroinflammatory response in humans after traumatic brain injury. Neuropathol Appl Neurobiol 2013; 39(6):654–66. DOI: 10.1111/nan.12008.

37. Mostofa A.G., Punganuru S.R. et al. The process and regulatory components of inflammation in brain oncogenesis. Biomolecules 2017;7(2):E34. DOI: 10.3390/biom7020034.

38. Jo J., Wen P.Y. Antiangiogenic therapy of high-grade gliomas. Prog Neurol Surg 2018;31:180–99. DOI: 10.1159/000467379.

39. Schiffer D., Annovazzi L., Casalone C., Corona C., Mellai M. Glioblastoma: Microenvironment and Niche Concept. Cancers (Basel) 2018;11(1).E5. DOI: 10.3390/cancers11010005.

40. Van Bodegraven E.J., van Asperen J.V. et al. Importance of GFAP isoform-specific analyses in astrocytoma. Glia 2019;67(8):1417–33. DOI: 10.1002/glia.23594.

41. Valori C.F., Guidotti G., Brambilla L., Rossi D. Astrocytes: Emerging therapeutic targets in neurological disorders. Trends Mol Med 2019;25(99):750–9. DOI: 10.1016/j.molmed.2019.04.010.

42. Guan X., Hasan M.N., Maniar S. et al. Reactive Astrocytes in glioblastoma multiforme. Mol Neurobiol 2018;55(8):6927–38. DOI: 10.1007/s12035-018-0880-8.

43. Gimple R.C., Bhargava S., Dixit D., Rich J.N. Glioblastoma stem cells: lessons from the tumor hierarchy in a lethal cancer. Genes Dev 2019;33(11–12):591–609. DOI: 10.1101/gad.324301.119.

44. Schiffer D., Giordana M.T., Cvalla P. et al. Immunohistochemistry of glial reaction after injury in the rat: double staining and markers of cell proliferation. Int J Dev Neurosci 1993;11(2):269–80.

45. Hill-Felberg S.J., McIntosh T.K., Oliver D.L. et al. Concurrent loss and proliferation of astrocytes following lateral fluid percussion brain injury in the adult rat. J Neurosci Res 1999;57(2):271–9. DOI: 10.1002/(SICI)1097-4547(19990715)57:2<271::AID-JNR13>3.0.CO;2-Z.

46. Kernie S.G., Erwin T.M., Parada L.F. Brain remodeling due to neuronal and astrocytic proliferation after controlled cortical injury in mice. J Neuroci Res 2001;66(3):317–26. HTTPS://DOI.ORG/10.1002/jnr.10013.

47. Cassatella M.A., Östberg N.K., Tamassia N., Soehnlein O. Biological roles of neutrophil-derived granule proteins and cytokines. Trends Immunol 2019;40(7):648–64. DOI: 10.1016/j.it.2019.05.003.

48. Ferrer V.P., Moura Neto V., Mentlein R. Glioma infiltration and extracellular matrix: key players and modulators. Glia 2018;66(8):1542–65. DOI: 10.1002/glia.23309.

49. West P.K., Viengkhou B., Campbell I.L., Hofer M.J. Microglia responses to interleukin-6 and type I interferons in neuroinflammatory disease. Glia 2019;67(10):1821–41.DOI: 10.1002/glia.23634.

50. Chang N., Ahn S.H., Kong D.S. et al. The role of STAT3 in glioblastoma progression through dual influences on tumor cells and the immune microenvironment. Mol Cell Endocrinol 2017;451:53–65. DOI: 10.1016/j.mce.2017.01.004.

51. Linder B., Weirauch U., Ewe A. et al. Therapeutic targeting of Stat3 using lipopolyplex nanoparticle-formulated siRNA in a syngeneic orthotopic mouse glioma model. Cancers (Basel) 2019;11(3):E333. DOI: 10.3390/cancers11030333.

52. Zhan X., Gao H., Sun W. Correlations of IL-6, IL-8, IL-10, IL-17 and TNF-α with the pathological stage and prognosis of glioma patients. Minerva Med 2019;(111)20:192–5. DOI: 10.23736/S0026-4806.19.06101-9.

53. Samaras V., Piperi C., Korkolopoulou P. et al. Application of the ELISPOT method for comparative analysis of interleukin (IL)-6 and IL-10 secretion in peripheral blood of patients with astroglial tumors. Mol Cell Biochem 2007;304(1–2):343–51. DOI: 10.1007/s11010-007-9517-3.

54. Li R., Li G., Deng L. et al. IL-6 augments the invasiveness of U87MG human glioblastoma multiforme cells via up-regulation of MMP-2 and fascin-1. Oncol Rep 2010;23:1553–9. DOI: 10.3892/or_00000795.

55. Wang H., Lathia J.D., Wu Q. et al. Targeting interleukin 6 signaling suppresses glioma stem cell survival and tumor growth. Stem Cells 2009;27(10):2393–404. DOI: 10.1002/stem.188.

56. Yousefzadeh-Chabok S., Dehnadi Moghaddam A., Kazemnejad-Leili E. et al. The relationship between serum levels of Interleukins 6, 8, 10 and clinical outcome in patients with severe traumatic brain injury. Arch Trauma Res 2015;4(1):e18357. DOI: 10.5812/atr.18357.

57. Kosmopoulos M., Christofides A., Drekolias D. et al. Critical role of IL-8 targeting in gliomas. Curr Med Chem 2018;25(17):1954–67. DOI: 10.2174/0929867325666171129125712.

58. Christofides A., Kosmopoulos M., Piperi C. Pathophysiological mechanisms regulated by cytokines in gliomas. Cytokine 2015;71(2):377–84. DOI: 10.1016/j.cyto.2014.09.008.

59. Carlsson S.K., Brothers S.P., Wahlestedt C. Emerging treatment strategies for glioblastoma multiforme. EMBO Mol Med 2014;6(11):1359–70. DOI: 10.15252/emmm.201302627.

60. Figarella-Branger D., Colin C., Tchoghandjian A. et al. Glioblastomas: gliomagenesis, genetics, angiogenesis, and microenvironment. Neurochirurgie 2010;56(6):441–8. DOI: 10.1016/j.neuchi.2010.07.010.

61. Salazar-Ramiro A., Ramírez-Ortega D., de la Cruz V.P. et al. Role of redox status in development of glioblastoma. Front Immunol 2016;7:156. DOI: 10.3389/fimmu.2016.00156.

62. Korbecki J., Gutowska I., Kojder I. et al. New extracellular factors in glioblastoma multiforme development: neurotensin, growth differentiation factor-15, sphingosine-1-phosphate and cytomegalovirus infection. Oncotarget 2018;9(6):7219–70. DOI: 10.18632/oncotarget.24102.

63. Ma Q., Long W., Xing C. et al. Cancer stem cells and immunosuppressive microenvironment in glioma. Front Immunol 2018;9:2924. DOI: 10.3389/fimmu.2018.02924.

64. Zhou J., Shrikhande G., Xu J. et al. Tsc1 mutant neural stem/progenitor cells exhibit migration deficits and give rise to subependymal lesions in the lateral ventricle. Genes Dev 2011;25(15):1595–600. DOI: 10.1101/gad.16750211.

65. Rinaldi M., Caffo M., Minutoli L. et al. ROS and brain gliomas: an overview of potential and innovative therapeutic strategies. Int J Mol Sci 2016;17(6):E984. DOI: 10.3390/ijms17060984.

66. Ciccarone F., Castelli S., Ciriolo M.R. Oxidative stress-driven autophagy acROSs onset and therapeutic outcome in hepatocellular carcinoma. Oxid Med Cell Longev 2019;2019:6050123. DOI: 10.1155/2019/6050123.

67. Sanchez-Perez Y., Soto-Reyes E., GarciaCuellar C.M. et al. Role of epigenetics and oxidative stress in gliomagenesis. CNS Neurol Disord Drug Targets 2017;16(10):1090–8. DOI: 10.2174/1871527317666180110124645.

68. Colquhoun A. Cell biology-metabolic crosstalk in glioma. Int J Biochem Cell Biol 2017;89:171–81. DOI: 10.1016/j.biocel.2017.05.022.

69. Galgano M., Toshkezi G., Qiu X. et al. Traumatic brain injury: current treatment strategies and future endeavors. Cell Transplant 2017;26(7):1118–30. DOI: 10.1177/0963689717714102.

70. Conti A., Gulì C., La Torre D. et al. Role of inflammation and oxidative stress mediators in gliomas. Cancers (Basel) 2010;2(2):693–712. DOI: 10.3390/cancers2020693.

71. Khan M., Khan H., Singh I., Singh A.K. Hypoxia inducible factor-1 alpha stabilization for regenerative therapy in traumatic brain injury. Neural Regen Res 2017;12(5):696–701. DOI: 10.4103/16735374.206632.

72. Tu J., Fang Y., Han D. et al. Activation of nuclear factor-kappaB in the angiogenesis of glioma: Insights into the associated molecular mechanisms and targeted therapies. Cell Prolif 2021;54(2):e12929. DOI: 10.1111/cpr.12929.

73. D’Souza L.C., Mishra S., Chakraborty A. et al. Oxidative stress and cancer development: are noncoding RNAs the missing links? Antioxid Redox Signal 2020;33(17):1209–29. DOI: 10.1089/ars.2019.7987.

74. Li X., Wu C., Chen N. et al. PI3K/Akt/ mTOR signaling pathway and targeted therapy for glioblastoma. Oncotarget 2016;7(22):33440–50. DOI: 10.18632/oncotarget.7961.

75. Cohen A.L., Colman H. Glioma biology and molecular markers. Cancer Treat Res 2015;163:15–30. DOI: 10.1007/978-3-31912048-5_2.

76. Kupats E., Stelfa G., Zvejniece B. et al. Mitochondrial-protective effects of R-phenibut after experimental traumatic brain injury. Oxid Med Cell Longev 2020;2020:9364598. DOI: 10.1155/2020/9364598.

77. Vander Heiden M.G., DeBerardinis R.J. Understanding the Intersections between Metabolism and Cancer Biology Cell 2017;168(4):657–69. DOI: 10.1016/j.cell.2016.12.039.

78. Shteinfer-Kuzmine A., Arif T., Krelin Y. et al. Mitochondrial VDAC1-based peptides: attacking oncogenic properties in glioblastoma. Oncotarget 2017;8(19):31329–46. DOI: 10.18632/oncotarget.15455.

79. Vaupel P., Schmidberger H., Mayer A. The Warburg effect: essential part of metabolic reprogramming and central contributor to cancer progression. Int J Radiat Biol 2019;95(7):912–9. DOI: 10.1080/09553002.2019.1589653.


Для цитирования:


Гареев И.Ф., Филиппов Ю.Г., Бейлерли О.А., Суфианов А.А., Тюрин А.В., Мухаметов У.Ф., Yang G., Бейлерли А.Т. Механизм развития посттравматических глиом. Успехи молекулярной онкологии. 2021;8(4):29-41. https://doi.org/10.17650/2313-805X-2021-8-4-29-41

For citation:


Gareev I.F., Filippov Yu.G., Beylerli O.A., Sufianov A.A., Tyurin A.V., Mukhametov U.F., Yang G., Beylerli A.T. The mechanism of development of post-traumatic gliomas. Advances in Molecular Oncology. 2021;8(4):29-41. (In Russ.) https://doi.org/10.17650/2313-805X-2021-8-4-29-41

Просмотров: 41


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2313-805X (Print)
ISSN 2413-3787 (Online)
X