Inhibition of glucocorticoid-induced REDD1 expression by rapamycin in breast cancer cells
https://doi.org/10.17650/2313-805X-2022-9-1-42-47
Abstract
Introduction. Glucocorticoids are often used in combination therapy for breast cancer as an adjuvant to increase therapeutic effects of the main cytotoxic drug and to reduce side effects of chemotherapy. However, glucocorticoids can cause serious complications and trigger tumor progression. In the last decade, it was found that side effects from glucocorticoids are mediated by an increase in REDD1 gene expression. Using this knowledge, we have developed a new chemotherapeutic strategy for blood cancers aimed at reducing adverse events from glucocorticoids. Successful experiments with a combination of glucocorticoids and REDD1 expression inhibitors on the models of blood tumors allowed us to use this regimen for the treatment of certain subtypes of breast cancer.
Objective: to optimize the algorithm of breast cancer cell treatment with a combination of glucocorticoids and REDD1 expression inhibitors on the example of rapamycin.
Materials and methods. We used the MCF-7 and MDA-MB-231 breast cancer cell lines. The antiproliferative activity was estimated by direct cell count; REDD1 expression was measured using western blotting and quantitative polymerase chain reaction.
Results. We found that rapamycin can inhibit both baseline and glucocorticoids induced REDD1 expression in the cells of luminal and triple negative breast cancer. The drug demonstrated lower ability to inhibit the viability of breast cancer cells than that of leukemia and lymphoma cells.
Conclusion. Inhibited proliferation of breast cancer cells after their incubation with rapamycin and dexamethasone, as well as the ability of rapamycin to reduce basal and glucocorticoid-induced REDD1 expression in breast cancer cells suggest the importance of studies analyzing the impact of combinations that include glucocorticoids and REDD1 expression inhibitors from the class of PI3K/Akt/mTOR signaling pathway modulators (phosphoinositide-3-kinase/α-serine-threonine kinase/mammalian rapamycin target) on breast cancer cells.
Keywords
About the Authors
D. D. GrigorievaRussian Federation
24 Kashirskoe Shosse, Moscow 115478
E. M. Zhidkova
Russian Federation
24 Kashirskoe Shosse, Moscow 115478
E. S. Lylova
Russian Federation
24 Kashirskoe Shosse, Moscow 115478
D. V. Demina
Russian Federation
78 Vernadsky Prospekt, Moscow 119454
K. I. Kirsanov
Russian Federation
24 Kashirskoe Shosse, Moscow 115478
6 Miklukho-Maklaya St., Moscow 117198
G. A. Belitsky
Russian Federation
24 Kashirskoe Shosse, Moscow 115478
M. G. Yakubovskaya
Russian Federation
24 Kashirskoe Shosse, Moscow 115478
E. A. Lesovaya
Russian Federation
Ekaterina Andreevna Lesovaya
24 Kashirskoe Shosse, Moscow 115478
9 Vysokovoltnaya St., Ryazan 390026
References
1. Volden P.A., Conzen S.D. The influence of glucocorticoid signaling on tumor progression. Brain Behav Immun 2013;30:S26–31. DOI: 10.1016/j.bbi.2012.10.022.
2. Belova L., Delgado B., Kocherginsky M. et al. Glucocorticoid receptor expression in breast cancer associates with older patient age. Breast Cancer Res Treat 2009;116(3):441–7. DOI: 10.1007/s10549-008-0136-9.
3. Baida G., Bhalla P., Kirsanov K. et al. REDD1 functions at the crossroads between the therapeutic and adverse effects of topical glucocorticoids. EMBO Mol Med 2015;7(1):42–58. DOI: 10.15252/emmm.201404601.
4. Lesovaya E., Agarwal S., Readhead B. et al. Rapamycin modulates glucocorticoid receptor function, blocks atrophogene REDD1, and protects skin from steroid atrophy. J Invest Dermatol 2018;138(9):1935–44. DOI: 10.1016/j.jid.2018.02.045.
5. Lesovaya E.A., Savinkova A.V., Morozova O.V. et al. A Novel approach to safer glucocorticoid receptor-targeted antilymphoma therapy via REDD1 (regulated in development and DNA damage 1) inhibition. Mol Cancer Ther 2020;19(9):1898–908. DOI: 10.1158/1535-7163.MCT-19-1111.
6. Agarwal S., Mirzoeva S., Readhead B. et al. PI3K inhibitors protect against glucocorticoid-induced skin atrophy. EBioMedicine 2019;41:526–37. DOI: 10.1016/j.ebiom.2019.01.055.
7. Lan Y.C., Chang C.L., Sung M.T. et al. Zoledronic acid-induced cytotoxicity through endoplasmic reticulum stress triggered REDD1-mTOR pathway in breast cancer cells. Anticancer Res 2013;33(9):3807–14.
8. Yun S.M., Woo S.H., Oh S.T. et al. Melatonin enhances arsenic trioxideinduced cell death via sustained upregulation of REDD1 expression in breast cancer cells. Mol Cell Endocrinol 2016;422:64–73. DOI: 10.1016/j.mce.2015.11.016.
9. Pinto J.A., Rolfo C., Raez L.E. et al. In silico evaluation of DNA damage inducible transcript 4 gene (DDIT4) as prognostic biomarker in several malignancies. Sci Rep 2017;7:1526. DOI: 10.1038/s41598-017-01207-3.
10. Tirado-Hurtado I., Fajardo W., Pinto J.A. DNA Damage inducible transcript 4 gene: the switch of the metabolism as potential target in cancer. Front Oncol 2018;8:106. DOI: 10.3389/fonc.2018.00106.
11. Жидкова Е.М., Кузин К.А., Тилова Л.Р. и др. Сравнительный анализ биологических эффектов селективного агониста глюкокортикоидного рецептора CpdA на клеточные линии рака молочной железы различных молекулярных подтипов. Сибирский онкологический журнал 2017;16(6):41–6. [Zhidkova E.M., Kuzin K.A., Tilova L.R. et al. Comparative analysis of biological effects of selective activator of the glucocorticoid receptor CpdA on different subtypes of breast cancer cell lines. Sibirskij onkologicheskij zhurnal = Siberian journal of oncology 2017;16(6):41–6. (In Russ.)]. DOI: 10.21294/1814-4861-2017-16-6-41-46.
12. Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976;72:248–54. DOI: 10.1006/abio.1976.9999.
Review
For citations:
Grigorieva D.D., Zhidkova E.M., Lylova E.S., Demina D.V., Kirsanov K.I., Belitsky G.A., Yakubovskaya M.G., Lesovaya E.A. Inhibition of glucocorticoid-induced REDD1 expression by rapamycin in breast cancer cells. Advances in Molecular Oncology. 2022;9(1):42-47. (In Russ.) https://doi.org/10.17650/2313-805X-2022-9-1-42-47