Molecular heterogeneity and analysis of the long-term survival of patients with gastrointestinal stromal tumors
https://doi.org/10.17650/2313-805X-2022-9-2-43-57
Abstract
Introduction. Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of the gastrointestinal tract the character diagnostic feature of which is CD117 (KIT) expression. GISTs are clinically diverse and have different genetic alterations that may have predictive and prognostic significance.
Aim – the study of clinical, morphological and genetic features of GISTs to assess the overall survival (OS) of patients with various profiles of genetic disorders for elucidation the factors contributing to prognosis.
Materials and methods. A total 244 GIST patients who received combined treatment were enrolled in the study and their clinical characteristics and mutational status of KIT, PDGFRA, BRAF were analyzed. SDH-deficient GISTs were detected using IHC-analysis of SDHB expression.
Results. Stromal tumors developed in stomach (50 %), small intestine (37.7 %), colon or rectum (8.6 %), esophagus (0.4 %) and extraorganically (EGIST, 5.7 %). Overall survival correlated with gastric site (p = 0.005), tumor size <10 cm (p = 0,0001) and mitotic count HPF< 10 / 50 (p = 0.007). KIT mutations were found in 168 (68.9 %) and PDGFRA – in 31 (12.1 %) of GISTs, 14 novel mutations were detected. Mutations in KIT exon 11 were found in 140 (57.4 %) tumors, 10-year OS, 51 %, median 124 months. Patients with deletions had lower OS than patients with substitutions or duplications in KIT exon 11 (p = 0,023). The lowest OS was in patients with primary mutations in KIT exons 13 or 17 (median 28 months) and duplications in KIT exon 9 (median 71 months). There was a low OS of young patients with homozygous KIT mutations, mutations that begin in intron and two simultaneous KIT mutations. GISTs with PDGFRA mutations were located in stomach and had no metastases, 10-year OS, 63 %, median 175 months. KIT / PDGFRA mutations were not observed in 45 (18.4 %) patients (wild-type GIST), 10-year OS, 59 %, median 250 months. Wild-type GISTs with BRAF, NF1 mutations and SDH deficiency were detected. The better OS was demonstrated by patients with BRAFV600E (10-year ОS, 84 %, median 97 months) and SDH deficiency (10-year and 15-year OS, 82 %).
Conclusion. Genetic analysis is necessary to clarify GIST prognosis and predict the effectiveness of targeted therapy. The clinical, morphological and genetic diversity of GISTs was confirmed. Wild-type GISTs with BRAF mutations and SDHdeficiency were identified in the Russian population for the first time. The long-term 10- и 15-year OS of GIST patients were evaluated.
About the Authors
N. N. MazurenkoRussian Federation
Natalia Nikolaevna Mazurenko
24 Kashirskoye Shosse, Moscow 115478
V. V. Yugay
Russian Federation
24 Kashirskoye Shosse, Moscow 115478
I. V. Tsyganova
Russian Federation
24 Kashirskoye Shosse, Moscow 115478
M. P. Nikulin
Russian Federation
24 Kashirskoye Shosse, Moscow 115478
P. P. Arkhiri
Russian Federation
24 Kashirskoye Shosse, Moscow 115478
O. A. Anurova
Russian Federation
24 Kashirskoye Shosse, Moscow 115478
N. A. Kozlov
Russian Federation
24 Kashirskoye Shosse, Moscow 115478
I. S. Stilidi
Russian Federation
24 Kashirskoye Shosse, Moscow 115478
References
1. Miettinen M., Lasota J. Gastrointestinal stromal tumors–definition, clinical, histological, immunohistochemical, and molecular genetic features and differential diagnosis. Virchows Arch 2001;438(1): 1–12. DOI: 10.1007/s004280000338.
2. Corless C.L., Barnett C.M., Heinrich M.C. Gastrointestinal stromal tumours: origin and molecular oncology. Nat Rev Cancer 2011;11(12):865–78. DOI: 10.1038/nrc3143.
3. Joensuu H., Hohenberger P., Corless C.L. Gastrointestinal stromal tumour. Lancet 2013;382:973–83. DOI: 10.1016/S0140-6736(13)62398-3.
4. Mazurenko N.N., Tsyganova I.V. Genetic peculiarities and markers of gastrointestinal stromal tumors. In: Molecular carcinogenesis. Moscow: “ABV-press”, 2016. P. 300–322. (In Russ.).
5. Søreide K., Sandvik O.M., Søreide J.A. et al. Global epidemiology of gastrointestinal stromal tumours (GIST): A systematic review of population-based cohort studies. Cancer Epidemiol 2016;40:39–46. DOI: 10.1016/j.canep.2015.10.031.
6. Kindblom L.G., Remotti H.E., Aldenborg F., Meis-Kindblom J.M. Gastrointestinal pacemaker cell tumor (GIPACT): gastrointestinal stromal tumors show phenotypic characteristics of the interstitial cells of Cajal. Am J Pathol 1998;152(5):1259–69.
7. Sarlomo-Rikala M., Kovatich A.J., Barusevicius A., Miettinen M. CD117: a sensitive marker for gastrointestinal stromal tumors that is more specific than CD34. Mod Pathol 1998;11(8):728–34.
8. Hirota S., Isozaki K., Moriyama Y. et al. Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science 1998;279(5350):577–80. DOI: 10.1126/science.279.5350.577.
9. Heinrich M.C., Corless C.L., Duensing A. et al. PDGFRA activating mutations in gastrointestinal stromal tumors. Science 2003;299(5607):708–10. DOI: 10.1126/science.1079666.
10. Miettinen M., Sobin L.H., Lasota J. Gastrointestinal stromal tumors of the stomach: a clinicopathologic, immunohistochemical, and molecular genetic study of 1765 cases with long-term follow-up. Am J Surg Pathol 2005; 29(1):52–68. DOI: 10.1097/01.pas.0000146010.92933.de.
11. Corless C.L., Schroeder A., Griffith D. et al. PDGFRA mutations in gastrointestinal stromal tumors: frequency, spectrum and in vitro sensitivity to imatinib. J Clin Oncol 2005;23(23):5357–64. DOI: 10.1200/JCO.2005.14.068.
12. Belyakov I.S., Anurova O.A., Snigur P.V. et al. C-KIT and PDGFRA mutations and clinico-morphological features of gastrointestinal stromal tumors. Voprosy onkologii = Problems in oncology 2007; 53(6):677–81. (In Russ.).
13. Tsyganova I.V., Belyakov I.S., Anurova O.A., Mazurenko N.N. Prognostic significance of KIT and PDGFRA mutations in gastrointestinal stromal tumors. Molecular medicine 2015;2:61–4. (In Russ.).
14. Postow M.A., Robson M.E. Inherited gastrointestinal stromal tumor syndromes: mutations, clinical features, and therapeutic implications. Clin Sarcoma Res 2012;2(1):16. DOI: 10.1186/2045-3329-2-16.
15. Agaimy A., Wünsch P.H., Hofstaedter F. et al. Minute gastric sclerosing stromal tumors (GIST tumorlets) are common in adults and frequently show c-KIT mutations. Am J Surg Pathol 2007;31(1):113–20. DOI: 10.1097/01.pas.0000213307.05811.f0.
16. Miettinen M., Lasota J. Gastrointestinal stromal tumors: pathology and prognosis at different sites. Semin Diagn Pathol 2006;23(2):70–83. DOI: 10.1053/j.semdp.2006.09.001.
17. Tsyganova I.V., Anurova O.A., Mazurenko N.N. Morphological characteristics and prognostic criteria for gastrointestinal stromal tumors. Arkh Patol 2011;73(6):37–42. (In Russ.).
18. Joensuu H., Rutkowski P., Nishida T. et al. KIT and PDGFRA mutations and the risk of GI stromal tumor recurrence. J Clin Oncol 2015;33(6):634–42. DOI: 10.1200/JCO.2014.57.4970.
19. Wozniak A., Rutkowski P., Schöffski P. et al. Tumor genotype is an independent prognostic factor in primary gastrointestinal stromal tumors of gastric origin: a european multicenter analysis based on Contica GIST. Clin Cancer Res 2014;20:6105–16. DOI: 10.1158/1078-0432.CCR-14-1677.
20. Corless C.L., Ballman K.V., Antonescu C.R. et al. Pathologic and molecular features correlate with long-term outcome after adjuvant therapy of resected primary GI stromal tumor: the ACOSOG Z9001 trial. J Clin Oncol 2014;32(15):1563–70. DOI: 10.1200/JCO.2013.51.2046.
21. Zhang H., Liu Q. Prognostic indicators for gastrointestinal stromal tumors: a review. Transl Oncol 2020;13(10):100812. DOI: 10.1016/j.tranon.2020.100812.
22. Joensuu H., Roberts P.J., Sarlomo-Rikala M. et al. Effect of the tyrosine kinase inhibitor STI571 in a patient with a metastatic gastrointestinal stromal tumor. N Engl J Med 2001;344(14):1052–6. DOI: 10.1056/NEJM200104053441404.
23. Joensuu H., Wardelmann E., Sihto H. et al. Effect of KIT and PDGFRA mutations on survival in patients with gastrointestinal stromal tumors treated with adjuvant imatinib: an exploratory analysis of a randomized clinical trial. JAMA Oncol 2017;3(5):602–9. DOI: 10.1001/jamaoncol.2016.5751.
24. Liu P., Tan F., Liu H. et al. The use of molecular subtypes for precision therapy of recurrent and metastatic gastrointestinal stromal tumor. Onco Targets Ther 2020; 13:2433–47. DOI: 10.2147/OTT.S241331.
25. Nishida T., Yoshinaga S., Takahashi T., Naito Y. Recent progress and challenges in the diagnosis and treatment of gastrointestinal stromal tumors. Cancers (Basel) 2021;13(13):3158. DOI: 10.3390/cancers13133158.
26. Patel S.R., Reichardt P. An updated review of the treatment landscape for advanced gastrointestinal stromal tumors. Cancer 2021;127(13):2187–95. DOI: 10.1002/cncr.33630.
27. Wada R., Arai H., Kure S. et al. “Wild type” GIST: clinico-pathological features and clinical practice. Pathol Int 2016; 66(8):431–7. DOI: 10.1111/pin.12431.
28. Janeway K.A., Kim S.Y., Lodish M. et al. Defects in succinate dehydrogenase in gastrointestinal stromal tumors lacking KIT and PDGFRA mutations. Proc Natl Acad Sci USA 2011;108(1):314–8. DOI: 10.1073/pnas.1009199108.
29. Boikos S.A., Pappo A.S., Killian J.K. et al. Molecular subtypes of KIT/PDGFRA wild-type gastrointestinal stromal tumors: a report from the national institutes of health gastrointestinal stromal tumor clinic. JAMA Oncol 2016;2(7):922–8. DOI: 10.1001/jamaoncol.2016.0256.
30. Gopie P., Mei L., Faber A.C. et al. Classification of gastrointestinal stromal tumor syndromes. Endocr Relat Cancer 2018;25(2):R49–58. DOI: 10.1530/ERC-17-0329.
31. Huss S., Pasternack H., Ihle M.A. et al. Clinicopathological and molecular features of a large cohort of gastrointestinal stromal tumors (GISTs) and review of the literature: BRAF mutations in KIT/PDGFRA wild-type GISTs are rare events. Hum Pathol 2017;62:206–14. DOI: 10.1016/j.humpath.2017.01.005.
32. Miranda C., Nucifora M., Molinari F. et al. KRAS and BRAF mutations predict primary resistance to imatinib in gastrointestinal stromal tumors. Clin Cancer Res 2012;18(6):1769–76. DOI: 10.1158/1078-0432.CCR-11-2230.
33. Lasota J., Xi L., Coates T. et al. No KRAS mutations found in gastrointestinal stromal tumors (GISTs): molecular genetic study of 514 cases. Mod Pathol. 2013;26(11): 1488–91. DOI: 10.1038/modpathol.2013.89.
34. Mavroeidis L., Metaxa-Mariatou V., Papoudou-Bai A. et al. Comprehensive molecular screening by next generation sequencing reveals a distinctive mutational profile of KIT/PDGFRA genes and novel genomic alterations: results from a 20-year cohort of patients with GIST from northwestern Greece. ESMO Open 2018;3(3):e000335. DOI: 10.1136/esmoopen-2018-000335.
35. Ohshima K., Fujiya K., Nagashima T. et al. Driver gene alterations and activated signaling pathways toward malignant progression of gastrointestinal stromal tumors. Cancer Sci 2019;110(12):3821–33. DOI: 10.1111/cas.14202.
36. Miettinen M., Fetsch J.F., Sobin L.H., Lasota J. Gastrointestinal stromal tumors in patients with neurofibromatosis 1: a clinicopathologic and molecular genetic study of 45 cases. Am J Surg Pathol 2006;30(1):90–6. DOI: 10.1097/01.pas.0000176433.81079.bd.
37. Gasparotto D., Rossi S., Polano M. et al. Quadruple-negative gist is a sentinel for unrecognized neurofibromatosis type 1 syndrome. Clin Cancer Res 2017;23(1):273–82. DOI: 10.1158/1078-0432.CCR-16-0152.
38. Brenca M., Rossi S., Polano M. et al. Transcriptome sequencing identifies ETV6-NTRK3 as a gene fusion involved in GIST. J Pathol 2016;238(4):543–9. DOI: 10.1002/path.4677.
39. Shi E., Chmielecki J., Tang C.-M. et al. FGFR1 and NTRK3 actionable alterations in “Wild-Type” gastrointestinal stromal tumors J Transl Med 2016;14(1):339. DOI: 10.1186/s12967-016-1075-6.
40. Wang S., Sun R.Z., Han Q. et al. Genomic study of chinese quadruple-negative GISTs using next-generation sequencing technology. Appl Immunohistochem Mol Morphol 2021;29(1):34–41. DOI: 10.1097/PAI.0000000000000842.
41. Pantaleo M.A., Urbini M., Indio V. et al. Genome-wide analysis identifies MEN1 and MAX mutations and a neuroendocrine- like molecular heterogeneity in quadruple WT GIST. Mol Cancer Res 2017;15(5):553–62. DOI: 10.1158/1541-7786.MCR-16-0376.
42. Beliakov I., Mazurenko N., Anurova O. et al. Analysis of C-KIT mutations in gastrointestinal stromal tumors. Eur J Cancer Suppl 2005;3(2):216. DOI: 10.1016/S1359-6349(05)81052-3.
43. Stilidi I.S., Arkhiri P.P., Nikulin M.P. Surgical treatment of relapsing metastatic stromal tumor of the gastrointestinal tract. Voprosy onkologii = Problems in oncology 2011;57(4):508–12. (In Russ.).
44. Gaal J., Stratakis C.A., Carney J.A. et al. SDHB immunohistochemistry: a useful tool in the diagnosis of Carney-Stratakis and Carney triad gastrointestinal stromal tumors. Mod Pathol 2011;24(1):147–51. DOI: 10.1038/modpathol.2010.185.
45. Corless C.L., McGreevey L., Town A. et al. KIT gene deletions at the intron 10-exon 11 boundary in GI stromal tumors. J Mol Diagn 2004;6(4):366–70. DOI: 10.1016/S1525-1578(10)60533-8.
46. Shen Y.Y., Ma X.L., Wang M. et al. Exon 11 homozygous mutations and intron 10/exon 11 junction deletions in the KIT gene are associated with poor prognosis of patients with gastrointestinal stromal tumors. Cancer Med 2020;9(18):6485–96. DOI: 10.1002/cam4.3212.
47. Cavnar M.J., Seier K., Curtin C. et al. Outcome of 1000 patients with gastrointestinal stromal tumor (GIST) treated by surgery in the pre- and post-imatinib eras. Ann Surg 2021;273(1):128–38. DOI: 10.1097/SLA.0000000000003277.
48. Astolfi A., Indio V., Nannini M. et al. Targeted deep sequencing uncovers cryptic KIT mutations in KIT/PDGFRA/SDH/RAS-P Wild-Type GIST. Front Oncol 2020;10:504. DOI: 0.3389/fonc.2020.00504.
Review
For citations:
Mazurenko N.N., Yugay V.V., Tsyganova I.V., Nikulin M.P., Arkhiri P.P., Anurova O.A., Kozlov N.A., Stilidi I.S. Molecular heterogeneity and analysis of the long-term survival of patients with gastrointestinal stromal tumors. Advances in Molecular Oncology. 2022;9(2):43-57. (In Russ.) https://doi.org/10.17650/2313-805X-2022-9-2-43-57