Resistance of breast cancer cells to all-trans retinoic acid is associated with a decrease in the basal level of nuclear receptor RARα expression and induction of cytochrome CYP26A1 and CYP26B1 expression
https://doi.org/10.17650/2313-805X-2022-9-2-66-78
Abstract
Introduction. Retinoic acid (RA) is a key regulator of cell differentiation and a critical player in such systemic processes in the body as embryonic development, immune system cell maturation and functioning, tissue remodeling and several others. This compound displays an antitumor activity due to its ability to stimulate differentiation, induce apoptosis and inhibit proliferation of malignant cells. The rapid acquisition of resistance to RA and its analogues by solid tumor cells is one of the main problems limiting the widespread use of retinoids in the therapy of malignant neoplasms. The mechanisms of RA-resistance are still poorly understood.
The study objective – assessment of the relationship between the basal expression level of the nuclear RARα receptor and the RA-induced expression of the cytochromes CYP26A1and CYP26B1 with the resistance of breast cancer cells to the action of all-trans-retinoic acid.
Materials and methods. Cell lines were cultured, the sensitivity of breast cancer cells to the action of fully trans-retinoic acid, RNA isolation, reverse transcription reaction and real-time polymerase chain reaction were analyzed).
Results. In present study, using an experimental model represented by 9 breast cancer cell lines with different level of sensitivity to RA, we showed that the expression of the RA nuclear receptor RARα, as well as the level of mRNA induction of CYP26A1 and CYP26B1 cytochromes in response to RA treatment correlate with RA-sensitivity.
Conclusion. Thus, a decrease of RARα expression as well as the reduced ability to catabolize RA are factors associated with RA-resistance of breast cancer cells.
Keywords
About the Authors
A. D. EnikeevRussian Federation
24 Kashirskoe Shosse, Moscow 115478
A. V. Komelkov
Russian Federation
Andrey Viktorovich Komelkov
24 Kashirskoe Shosse, Moscow 115478
N. V. Elkina
Russian Federation
24 Kashirskoe Shosse, Moscow 115478
M. E. Akselrod
Russian Federation
24 Kashirskoe Shosse, Moscow 115478
S. A. Kuzmichev
Russian Federation
24 Kashirskoe Shosse, Moscow 115478
E. M. Tchevkina
Russian Federation
24 Kashirskoe Shosse, Moscow 115478
References
1. Rhinn M., Dolle P. Retinoic acid signalling during development. Development 2012;139(5):843–58. DOI: 10.1242/dev.065938.
2. Theodosiou M., Laudet V., Schubert M. From carrot to clinic: an overview of the retinoic acid signaling pathway. Cel Mol Life Sci 2010;67(9):1423–45. DOI: 10.1007/s00018-010-0268-z.
3. Connolly R.M., Nguyen N.K., Sukumar S. Molecular pathways: current role and future directions of the retinoic acid pathway in cancer prevention and treatment. Clin Cancer Res 2013;19(7):1651–9. DOI: 10.1158/1078-0432.CCR-12-3175.
4. Zhang H., Rosdahl I. Expression profiles of p53, p21, bax and bcl-2 proteins in all-trans-retinoic acid treated primary and metastatic melanoma cells. Int J Oncol 2004;25(2):303–8.
5. Mrass P., Rendl M., Mildner M. et al. Retinoic acid increases the expression of p53 and proapoptotic caspases and sensitizes keratinocytes to apoptosis: a possible explanation for tumor preventive action of retinoids. Cancer Res 2004;64(18):6542–8. DOI: 10.1158/0008-5472.CAN-04-1129.
6. Lüscher B., Mitchell P.J., Williams T., Tjian R. Regulation of transcription factor AP-2 by the morphogen retinoic acid and by second messengers. Genes Dev 1989;3(10):1507–17. DOI: 10.1101/gad.3.10.1507.
7. Donato L.J., Suh J.H., Noy N. Suppression of mammary carcinoma cell growth by retinoic acid: The cell cycle control gene Btg2 is a direct target for retinoic acid receptor signaling. Cancer Res 2007;67(2):609–15. DOI: 10.1158/0008-5472.CAN-06-0989.
8. Donato L.J., Noy N. Suppression of mammary carcinoma growth by retinoic acid: Proapoptotic genes are targets for retinoic acid receptor and cellular retinoic acid-binding protein II signaling. Cancer Res 2005;65(18):8193–9. DOI: 10.1158/0008-5472.CAN-05-1177.
9. Pratt M.A.C., Niu M., White D. Differential regulation of protein expression, growth and apoptosis by natural and synthetic retinoids. J Cell Biochem 2003;90(4):692–708. DOI: 10.1002/jcb.10682.
10. Raffo P., Emionite L., Colucci L. et al. Retinoid receptors: pathways of proliferation inhibition and apoptosis induction in breast cancer cell lines. Anticancer Res 2000;20(3A):1535–43.
11. Afonja O., Raaka B.M., Huang A. et al. RAR agonists stimulate SOX9 gene expression in breast cancer cell lines: Evidence for a role in retinoid-mediated growth inhibition. Oncogene 2002;21(51):7850–60. DOI: 10.1038/sj.onc.1205985.
12. Afonja O., Juste D., Das S. et al. Induction of PDCD4 tumor suppressor gene expression by RAR agonists, antiestrogen and HER-2/neu antagonist in breast cancer cells. Evidence for a role in apoptosis. Oncogene 2004;23(49):8135–45. DOI: 10.1038/sj.onc.1207983.
13. Bushue N., Wan Y.-J.Y. Retinoid pathway and cancer therapeutics. Adv Drug DelivRev 2010;62(13):1285–98. DOI: 10.1016/j.addr.2010.07.003.
14. O’Byrne S.M., Blaner W.S. Retinol and retinyl esters: Biochemistry and physiology. J Lipid Res 2013;54(7):1731–43. DOI: 10.1194/jlr.R037648.
15. Thatcher J.E., Buttrick B., Shaffer S.A. et al. Substrate specificity and ligand interactions of CYP26A1, the human liver retinoic acid hydroxylase. Mol Pharmacol 2011;80(2):228–39. DOI: 10.1124/mol.111.072413.
16. Stevison F., Jing J., Tripathy S., Isoherranen N. Role of retinoic acidmetabolizing cytochrome P450s, CYP26, in inflammation and cancer. Adv Pharmacol 2015;74:373–412. DOI: 10.1016/bs.apha.2015.04.006.
17. Tchevkina E.M. Retinoic acid binding proteins and cancer: similarity or polarity? Cancer Ther Oncol Int J 2017;8(2). Available at: https://juniperpublishers.com/ctoij/pdf/CTOIJ.MS.ID.555733.pdf.
18. Soprano D.R., Qin P., Soprano K.J. Retinoic acid receptors and cancers. Annu Rev Nutr 2004;24(1):201–21. DOI: 10.1146/annurev.nutr.24.012003.132407.
19. Ross-Innes C.S., Stark R., Holmes K.A. Cooperative interaction between retinoic acid receptor-alpha and estrogen receptor in breast cancer. Genes Devel 2010;24(2):171–82. DOI: 10.1101/gad.552910.
20. Garattini E., Bolis M., Garattini S.K. et al. Retinoids and breast cancer: from basic studies to the clinic and back again. Cancer Treat Rev 2014;40(6):739–49. DOI: 10.1016/j.ctrv.2014.01.001.
21. Breitman T.R., Selonick S.E., Collins S.J. Induction of differentiation of the human promyelocytic leukemia cell line (HL-60) by retinoic acid. Proc Nat Acad Sci USA 1980;77(5):2936–40. DOI: 10.1073/pnas.77.5.2936.
22. Spinella M.J., Kerley J.S., White K.A., Curtin J.C. Retinoid target gene activation during induced tumor cell differentiation: human embryonal carcinoma as a model. J Nutr 2003;133(1):273S–6S. DOI: 10.1093/jn/133.1.273S.
23. Huang Y., Boskovic G., Niles R.M. Retinoic acid-induced AP-1 transcriptional activity regulates B16 mouse melanoma growth inhibition and differentiation. J Cell Physiol 2003;194(2):162–70.
24. Gudas L.J., Wagner J.A. Retinoids regulate stem cell differentiation. J Cell Physiol 2011;226(2):322–30. DOI: 10.1002/jcp.22417.
25. Singh B., Murphy R.F., Ding X.-Z. et al. On the role of transforming growth factorbeta in the growth inhibitory effects of retinoic acid in human pancreatic cancer cells. Mol Cancer 2007;6:82. DOI: 10.1186/1476-4598-6-82.
26. Wu S., Donigan A., Platsoucas C.D. et al. All-trans-retinoic acid blocks cell cycle progression of human ovarian adenocarcinoma cells at late G1. Exp Cell Res 1997;232(2):277–86. DOI: 10.1006/excr.1997.3495.
27. Pfahl M., Piedrafita F.J. Retinoid targets for apoptosis induction. Oncogene 2003;22(56):9058–62.
28. Sadikoglou E., Magoulas G., Theodoropoulou C. et al. Effect of conjugates of all-trans-retinoic acid and shorter polyene chain analogues with amino acids on prostate cancer cell growth. Eur J Med Chem 2009;44(8):3175–87. DOI: 10.1016/j.ejmech.2009.03.029.
29. Lee J.H., Yoon J.H., Yu S.J. et al. Retinoic acid and its binding protein modulate apoptotic signals in hypoxic hepatocellular carcinoma cells. Cancer Lett 2010;295(2):229–35.
30. Kini A.R., Peterson L.A., Tallman M.S., Lingen M.W. Angiogenesis in acute promyelocytic leukemia: induction by vascular endothelial growth factor and inhibition by all-trans retinoic acid. Blood 2001;97(12.):3919–24. DOI: 10.1182/blood.v97.12.3919.
31. Kim M.S., Kim Y.K., Eun H.C. et al. All-trans retinoic acid antagonizes UV-induced VEGF production and angiogenesis via the inhibition of ERK activation in human skin keratinocytes. J Invest Dermatol 2006;126(12):2697–706. DOI: 10.1038/sj.jid.5700463.
32. Degos L. All-trans-retinoic acid treatment and retinoic acid receptor alpha gene rearrangement in acute promyelocytic leukemia: a model for differentiation therapy. Int J Cell Cloning 1992;10(2):63–9. DOI: 10.1002/stem.5530100202.
33. Dvorak C.C., Sanders R.P., Dahl G.V.H. et al. Reinduction of relapsed acute promyelocytic leukemia with ATRA and low dose antimetabolite-based chemotherapy. Pediatr Blood Cancer 2007;48(5): 582–5. DOI: 10.1002/pbc.20592.
34. Ahmad Tali M., Bashir Y., Bhat S. et al. Pseudotumour cerebri in acute promyelocytic leukemia on treatment with all-trans-retinoic acid (ATRA) – an experience from a tertiary care centre. Malays J Pathol 2015;37(2):141–4.
35. Degos L., Wang Z.Y. All trans retinoic acid in acute promyelocytic leukemia. Oncogene 2001;20(49):7140–5. DOI: 10.1038/sj.onc.1204763.
36. Fenaux P., Wang Z.Z., Degos L. Treatment of acute promyelocytic leukemia by retinoids. Curr Top Microbiol Immunol 2007;313:101–28. DOI: 10.1007/978-3-540-34594-7_7.
37. Duvic M., Hymes K., Heald P. et al. Bexarotene is effective and safe for treatment of refractory advanced-stage cutaneous t-cell lymphoma: multinational phase II–III trial results. J Clin Oncol 2001;19(9):2456–71. DOI: 10.1200/JCO.2001.19.9.2456.
38. Caselli E., Galvan M., Santoni F. et al. Retinoic acid analogues inhibit human herpesvirus 8 replication. Antivir Ther 2008;13:199–209.
39. Khuri F.R., Lippman S.M., Spitz M.R. et al. Molecular epidemiology and retinoid chemoprevention of head and neck cancer. J Nat Cancer Ins 1997;89(3):199–211. DOI: 10.1093/jnci/89.3.199.
40. Zuccari G., Carosio R., Fini A. et al. Modified polyvinylalcohol for encapsulation of all-trans-retinoic acid in polymeric micelles. J Control Release 2005;103(2): 369–80. DOI: 10.1016/j.jconrel.2004.12.016.
41. Garattini E., Gianni M., Terao M. Retinoids as differentiating agents in oncology: a network of interactions with intracellular pathways as the basis for rational therapeutic combinations. Curr Pharmac Design 2007;13(13):1375–400. DOI: 10.2174/138161207780618786.
42. Lippman S.M., Meyskens F.L.J. Treatment of advanced squamous cell carcinoma of the skin with isotretinoin. Ann Int Med 1987;107(4):499–502. DOI: 10.7326/0003-4819-107-4-499.
43. Altucci L., Gronemeyer H. The promise of retinoids to fight against cancer. Nat Rev Cancer 2001;1(3):81–93. DOI: 10.1038/35106036.
44. Chlapek P., Slavikova V., Mazanek P. et al. Why differentiation therapy sometimes fails: Molecular mechanisms of resistance to retinoids. Int J Mol Sci 2018;19(1):132. DOI: 10.3390/ijms19010132.
45. Ohnuma-Ishikawa K., Morio T. et al. Knockdown of XAB2 enhances all-trans retinoic acid-induced cellular differentiation in all-trans retinoic acidsensitive and -resistant cancer cells. Cancer Res 2007;67(3):1019–29. DOI: 10.1158/0008-5472.CAN-06-1638.
46. Huang S., Laoukili J., Epping M.T. et al. ZNF423 Is Critically required for retinoic acid-induced differentiation and is a marker of neuroblastoma outcome Cancer Cell 2009;15(4):328–40. DOI: 10.1016/j.ccr.2009.02.023.
47. Cheung B.B., Tan O., Koach J. et al. Thymosin-β4 is a determinant of drug sensitivity for Fenretinide and Vorinostat combination therapy in neuroblastoma. Mol Oncol 2015;9(7):1484–500. DOI: 10.1016/j.molonc.2015.04.005.
48. Masiá S., Barettino D., de Lera A.R., Alvarez S. Rapid, nongenomic actions of retinoic acid on phosphatidylinositol-3-kinase signaling pathway mediated by the retinoic acid receptor. Mol Endocrinol 2007;1(10):2391–402. DOI: 10.1210/me.2007-0062.
49. Alsayed Y., Uddin S., Mahmud N. et al. Activation of Rac1 and the p38 mitogenactivated protein kinase pathway in response to all-trans-retinoic acid. The Journal of biological chemistry. 2001;276(6):4012–9. DOI: 10.1074/jbc.M007431200.
50. García-Regalado A., Vargas M., García-Carrancá A. et al. Mol Cancer 2013;12:44. DOI: 10.1186/1476-4598-12-44.
51. Quintero Barceinas R.S., García-Regalado A., Aréchaga-Ocampo E. et al. All-trans retinoic acid induces proliferation, survival, and migration in A549 lung Cancer cells by activating the ERK signaling pathway through a transcription-independent mechanism. BioMed Res Int 2015;2015:404368. DOI: 10.1155/2015/404368.
52. Enikeev A.D., Komelkov A.V., Zborovskaya I.B. et al. Non-canonical activity of retinoic acid in relation to the activation of protein kinases in transformed cells of different origin. Advances in Molecular Oncology 2018;5(4):127-130. (In Russ.) DOI: 10.17650/2313-805X-2018-5-4-127–30. (In Russ.).
53. Piskunov A., Rochette-Egly C. A retinoic acid receptor RARα pool present in membrane lipid rafts forms complexes with G protein αQ to activate p38MAPK. Oncogene 2012;31:3333–45.
54. Enikeev A.D., Komelkov A.V., Axelrod M.E. et al. CRABP1 and CRABP2 protein levels do not correlate with the sensitivity of breast cancer cells to retinoic acid, but correlate with each other with CRABP2 being an upstream regulator of CRABP1 production. Biochemistry 2021;2(86):259–73. DOI: 10.1134/S0006297921020103.
55. Centritto F., Paroni G., Bolis M. et al. Cellular and molecular determinants of all-trans retinoic acid sensitivity in breast cancer: Luminal phenotype and RARα expression. EMBO molecular medicine 2015;7(7):950–72. DOI: 10.15252/emmm.201404670.
56. Moise A.R., Noy N., Palczewski K., Blaner W.S. Delivery of retinoid-based therapies to target tissues. Biochemistry 2007;46(15):4449–58. DOI: 10.1021/bi7003069.
57. Januchowski R., Wojtowicz K., Zabel M. The role of aldehyde dehydrogenase (ALDH) in cancer drug resistance. Biomed Pharmacother 2013;67(7):669–80. DOI: 10.1016/j.biopha.2013.04.005.
58. Boylan J.F., Gudas L.J. The level of CRABP-I expression influences the amounts and types of all-trans-retinoic acid metabolites in F9 teratocarcinoma stem cells. J Biol Chem 1992;267(30): 21486–91.
59. Fiorella P.D., Napoli J.L. Expression of cellular retinoic acid binding protein (CRABP) in Escherichia coli. Characterization and evidence that holo-CRABP is a substrate in retinoic acid metabolism. J Biol Chem 1991;266(25):16572–9.
60. Noy N. Retinoid-binding proteins: mediators of retinoid action. Biochem J 2000;348(Pt 3):481–95.
61. Napoli J.L. Interactions of retinoid binding proteins and enzymes in retinoid metabolism. Biochim Biophys Acta 1999;1440(2–3):139–62. DOI: 10.1016/s1388-1981(99)00117-1.
62. Napoli J., Posch K., Fiorella P., Boerman M. Physiological occurrence, biosynthesis and metabolism of retinoic acid: evidence for roles of Cellular Retinol-Binding Protein (CRBP) and Cellular Retinoic Acid-Binding Protein (CRABP) in the pathway of retinoic acid homeostasis. Biomed Pharmacother 1991;45(4–5):131–43. DOI: 10.1016/0753-3322(91)90101-x.
63. Liu R.Z., Garcia E., Glubrecht D.D. et al. CRABP1 is associated with a poor prognosis in breast cancer: Adding to the complexity of breast cancer cell response to retinoic acid. Mol Cancer 2015;14(1):129. DOI: 10.1186/s12943-015-0380-7.
64. Tang X.-H., Vivero M., Gudas L.J. Overexpression of CRABPI in suprabasal keratinocytes enhances the proliferation of epidermal basal keratinocytes in mouse skin topically treated with all-trans retinoic acid. Exp Cell Res 2008;314(1):38–51. DOI: 10.1016/j.yexcr.2007.07.016.
65. Budhu A.S., Noy N. Direct channeling of retinoic acid between cellular retinoic acid-binding protein II and retinoic acid receptor sensitizes mammary carcinoma cells to retinoic acid-induced growth arrest. Mol Cell Biol 2002;22(8):2632–41. DOI: 10.1128/MCB.22.8.2632-2641.2002.
66. Schug T.T., Berry D.C., Shaw N.S. et al. Opposing effects of retinoic acid on cell growth result from alternate activation of two different nuclear receptors. Cell 2007;129(4):723–73. DOI: 10.1016/j.cell.2007.02.050.
67. Widschwendter M., Berger J., Daxenbichler G. et al. Loss of retinoic acid receptor β expression in breast cancer and morphologically normal adjacent tissue but not in the normal breast tissue distant from the cancer. Cancer Res 1997;57(19):4158–61.
68. Mehrotra J., Vali M., McVeigh M. et al. Very high frequency of hypermethylated genes in breast cancer metastasis to the bone, brain, and lung. Clin Cancer Res 2004;10(9):3104–9. DOI: 10.1158/1078-0432.ccr-03-0118.
69. Sirchia S.M., Ferguson A.T., Sironi E. et al. Evidence of epigenetic changes affecting the chromatin state of the retinoic acid receptor beta2 promoter in breast cancer cells. Oncogene 2000;19(12):1556–63. DOI: 10.1038/sj.onc.1203456.
70. Sirchia S.M., Ren M., Pili R. et al. Endogenous reactivation of the RARbeta2 tumor suppressor gene epigenetically silenced in breast cancer. Cancer Res 2002;62:2455–61.
71. Paroni G., Fratelli M., Gardini G. et al. Synergistic antitumor activity of lapatinib and retinoids on a novel subtype of breast cancer with coamplification of ERBB2 and RARA. Oncogene 2012;31(29):3431–43. DOI: 10.1038/onc.2011.506.
72. Paroni G., Zanetti A., Barzago M.M. et al. Retinoic acid sensitivity of triple-negative breast cancer cells characterized by constitutive activation of the notch1 pathway: the role of rarβ. Cancers 2020;12(10):1–23. DOI: 10.3390/cancers12103027.
73. Xu X.C., Liu X., Tahara E. et al. Expression and up-regulation of retinoic acid receptor-β is associated with retinoid sensitivity and colony formation in esophageal cancer cell lines. Cancer Res 1999;59(10):2477–83.
74. Nagai J.I., Yazawa T., Okudela K. et al. Retinoic acid induces neuroblastoma cell death by inhibiting proteasomal degradation of retinoic acid receptor α. Cancer Res 2004;64(21):7910–7. DOI: 10.1158/0008-5472.CAN-04-1178.
75. Nelson C., Buttrick B., Isoherranen N. Therapeutic potential of the inhibition of the retinoic acid hydroxylases CYP26A1 and CYP26B1 by xenobiotics. Curr Top Med Chem 2013;13(12):1402–8. DOI: 10.2174/1568026611313120004.
76. Diaz P., Huang W., Keyari C.M., Buttrick B. et al. Development and characterization of novel and selective inhibitors of cytochrome P450 CYP26A1, the human liver retinoic acid hydroxylase. J Med Chem 2016;59(6):2579–95. DOI: 10.1021/acs.jmedchem.5b01780.
77. Van Der Leede B.J.M., Van Den Brink C.E., Pijnappel W.W.M. et al. Autoinduction of retinoic acid metabolism to polar derivatives with decreased biological activity in retinoic acid-sensitive, but not in retinoic acid-resistant human breast cancer cells. J Biol Chem 1997;272(29):17921–8. DOI: 10.1074/jbc.272.29.17921.
Review
For citations:
Enikeev A.D., Komelkov A.V., Elkina N.V., Akselrod M.E., Kuzmichev S.A., Tchevkina E.M. Resistance of breast cancer cells to all-trans retinoic acid is associated with a decrease in the basal level of nuclear receptor RARα expression and induction of cytochrome CYP26A1 and CYP26B1 expression. Advances in Molecular Oncology. 2022;9(2):66-78. (In Russ.) https://doi.org/10.17650/2313-805X-2022-9-2-66-78