Нарушение метилирования ДНК при злокачественных новообразованиях
https://doi.org/10.17650/2313-805X-2022-9-4-24-40
Аннотация
Метилирование ДНК представляет собой модификацию хроматина, которая играет важную роль в эпигенетической регуляции экспрессии генов. Изменение паттернов метилирования ДНК характерно для многих злокачественных новообразований. Метилирование ДНК осуществляется ДНК-метилтрансферазами (DNMTs), в то время как деметилирование происходит под действием метилцитозиновых диоксигеназ, или белков семейства TET. Мутации и изменение профиля экспрессии данных ферментов, приводящие к гипо- и гиперметилированию ДНК, могут оказывать сильное влияние на канцерогенез.
В обзоре рассмотрены ключевые аспекты механизмов регуляции метилирования и деметилирования ДНК, а также проведен анализ роли ДНК-метилтрансфераз и белков семейства ТЕТ в патогенезе различных злокачественных новообразований.
При подготовке обзора были использованы информационные базы биомедицинской литературы Scopus (504), PubMed (553), Web of Science (1568), eLibrary (190), для получения полнотекстовых документов – электронные ресурсы PubMed Central (PMC), Science Direct, Research Gate, КиберЛенинка, для анализа мутационного профиля эпигенетических регуляторных ферментов – портал cBioportal (https://www.cbioportal.org / ), данные проекта The AACR Project GENIE Consortium (https://www.mycancergenome.org / ), базы данных COSMIC, Clinvar и Атласа генома рака (The Cancer Genome Atlas, TCGA).
Ключевые слова
Об авторах
В. П. МаксимоваРоссия
115522 Москва, Каширское шоссе, 24
О. Г. Усалка
Россия
115522 Москва, Каширское шоссе, 24
119991 Москва, ул. Трубецкая, 8, стр. 2
Ю. В. Макусь
Россия
115522 Москва, Каширское шоссе, 24
117198 Москва, ул. Миклухо-Маклая, 6
В. Г. Попова
Россия
115522 Москва, Каширское шоссе, 24
125047 Москва, Миусская площадь, 9
Е. С. Трапезникова
Россия
119991 Москва, ул. Трубецкая, 8, стр. 2
Г. И. Хайриева
Россия
119991 Москва, ул. Трубецкая, 8, стр. 2
Г. Р. Сагитова
Россия
119991 Москва, ул. Трубецкая, 8, стр. 2
Е. М. Жидкова
Россия
115522 Москва, Каширское шоссе, 24
А. Ю. Прус
Россия
115522 Москва, Каширское шоссе, 24
119454 Москва, проспект Вернадского, 78
М. Г. Якубовская
Россия
115522 Москва, Каширское шоссе, 24
К. И. Кирсанов
Россия
Кирилл Игоревич Кирсанов
115522 Москва, Каширское шоссе, 24
117198 Москва, ул. Миклухо-Маклая, 6
Список литературы
1. Sharma S., Kelly T.K., Jones P.A. Epigenetics in cancer. Carcinogenesis 2010;31(1):27–36. DOI: 10.1093/carcin/bgp220
2. Fujimura A., Pei H., Zhang H. et al. Editorial: the role of epigenetic modifications in cancer progression. Front Oncol 2021;10:617178. DOI: 10.3389/FONC.2020.617178
3. Cheng Y., He C., Wang M. et al. Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials. Signal Transduc Target Ther 2019;4(1):62. DOI: 10.1038/S41392-019-0095-0
4. Лихтенштейн А.В., Киселева Н.П. Метилирование ДНК и канцерогенез. Биохимия 2001;66(3):293–317.
5. Nishiyama A., Nakanishi M. Navigating the DNA methylation landscape of cancer. Trends Genetics 2021;37(11):1012–27. DOI: 10.1016/J.TIG.2021.05.002
6. Casalino L., Verde P. Multifaceted roles of DNA methylation in neoplastic transformation, from tumor suppressors to EMT and metastasis. Genes 2020;11(8):922. DOI: 10.3390/GENES11080922
7. Romero-Garcia S., Prado-Garcia H., Carlos-Reyes A. Role of DNA methylation in the resistance to therapy in solid tumors. Front Oncol 2020;10:1152. DOI: 10.3389/FONC.2020.01152/XML/NLM
8. Takeshima H., Niwa T., Yamashita S. et al. TET repression and increased DNMT activity synergistically induce aberrant DNA methylation. J Clin Invest 2020;130(10):5370–9. DOI: 10.1172/JCI124070
9. Kulis M., Esteller M. DNA methylation and cancer. Adv Genet 2010;70(C):27–56. DOI: 10.1016/B978-0-12-380866-0.60002-2
10. Lu Y., Chan Y.T., Tan H.Y. et al. Epigenetic regulation in human cancer: the potential role of epi-drug in cancer therapy. Mol Cancer 2020;19:1–16. DOI: 10.1186/S12943-020-01197-3
11. Suh D.H., Kim M.K., Kim H.S. et al. Epigenetic therapies as a promising strategy for overcoming chemoresistance in epithelial ovarian cancer. J Cancer Prev 2013;18(3):227–34. DOI: 10.15430/JCP.2013.18.3.227
12. Tuorto F., Herbst F., Alerasool N. et al. The tRNA methyltransferase Dnmt2 is required for accurate polypeptide synthesis during haematopoiesis. EMBO J 2015;34(18):2350–62. DOI: 10.15252/EMBJ.201591382
13. Hervouet E., Peixoto P., Delage-Mourroux R. et al. Specific or not specific recruitment of DNMTs for DNA methylation, an epigenetic dilemma. Clin Epigen 2018;10:1–18. DOI: 10.1186/S13148-018-0450-Y
14. Zhang J., Yang C., Wu C. et al. DNA methyltransferases in cancer: biology, paradox, aberrations, and targeted therapy. Cancers 2020;12(8):2123. DOI: 10.3390/CANCERS12082123
15. Gao L., Emperle M., Guo Y. et al. Comprehensive structurefunction characterization of DNMT3b and DNMT3a reveals distinctive de novo DNA methylation mechanisms. Nat Commun 2020;11(1). DOI: 10.1038/s41467-020-17109-4
16. Harrison J.S., Cornett E.M., Goldfarb D. et al. Hemi-methylated DNA regulates DNA methylation inheritance through allosteric activation of H3 ubiquitylation by UHRF1. Elife 2016:e17101. DOI: 10.7554/ELIFE.17101
17. Xue B., Zhao J., Feng P. et al. Epigenetic mechanism and target therapy of UHRF1 protein complex in malignancies. Onco Targets Ther 2019;12:549–59. DOI: 10.2147/OTT.S192234
18. Ge Y.Z., Pu M.T., Gowher H. et al. Chromatin targeting of de novo DNA methyltransferases by the PWWP domain. J Biol Chem 2004;279(24):25447–54. DOI: 10.1074/JBC.M312296200
19. Patil V., Ward R.L., Hesson L.B. The evidence for functional non-CpG methylation in mammalian cells. Epigen 2014;9(6):823–8. DOI: 10.4161/EPI.28741
20. Ma H., Morey R., O’Neil R.C. et al. Abnormalities in human pluripotent cells due to reprogramming mechanisms. Nature 2014;511(7508):177–83. DOI: 10.1038/nature13551
21. Liao J., Karnik R., Gu H. et al. Targeted disruption of DNMT1, DNMT3a and DNMT3b in human embryonic stem cells. Nat Genet 2015;47(5):469–78. DOI: 10.1038/NG.3258
22. Lister R., Pelizzola M., Dowen R.H. et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 2009;462(7271):315–22. DOI: 10.1038/NATURE08514
23. Shirane K., Toh H., Kobayashi H. et al. Mouse oocyte methylomes at base resolution reveal genome-wide accumulation of non-CpG methylation and role of DNA methyltransferases. PLoS Genet 2013;9(4):e1003439. DOI: 10.1371/JOURNAL.PGEN.1003439
24. Hashimoto H., Liu Y., Upadhyay A.K. et al. Recognition and potential mechanisms for replication and erasure of cytosine hydroxymethylation. Nucleic Acids Res 2012;40(11):4841–9. DOI: 10.1093/NAR/GKS155
25. Kohli R.M., Zhang Y. TET enzymes, TDG and the dynamics of DNA demethylation. Nature 2013;502(7472):472–9. DOI: 10.1038/nature12750
26. Kantidze O.L., Razin S.V. 5-hydroxymethylcytosine in DNA repair: A new player or a red herring? Cell Cycle 2017;16(16):1499–501. DOI: 10.1080/15384101.2017.1346761
27. Breiling A., Lyko F. Epigenetic regulatory functions of DNA modifications: 5-methylcytosine and beyond. Epigenetics Chromatin 2015;8(1):1–9. DOI: 10.1186/S13072-015-0016-6/FIGURES/3
28. Chowdhury B., Cho I.H., Hahn N., Irudayaraj J. Quantification of 5-methylcytosine, 5-hydroxymethylcytosine and 5-carboxylcytosine from the blood of cancer patients by an enzymebased immunoassay. Anal Chim Acta 2014;852:212–7. DOI: 10.1016/J.ACA.2014.09.020
29. Rodger E.J., Chatterjee A., Morison I.M. 5-hydroxymethylcytosine: a potential therapeutic target in cancer. Epigenetics 2014;6(5): 503–14. DOI: 10.2217/EPI.14.39
30. Wu H., D’Alessio A.C., Ito S. et al. Genome-wide analysis of 5-hydroxymethylcytosine distribution reveals its dual function in transcriptional regulation in mouse embryonic stem cells. Genes Dev 2011;25(7):679–84. DOI: 10.1101/GAD.2036011
31. Li W., Liu M. Distribution of 5-hydroxymethylcytosine in different human tissues. J Nucleic Acids 2011;2011:870726. DOI: 10.4061/2011/870726
32. Esteller M., Herman J.G. Cancer as an epigenetic disease: DNA methylation and chromatin alterations in human tumours. J Pathol 2002;196(1):1–7. DOI: 10.1002/PATH.1024
33. Wallwitz J., Aigner P., Stoiber D. Tumor suppressors in acute myeloid leukemia. Leuk Lymphoma 2021;62(10):2320–30. DOI: 10.1080/10428194.2021.1907372
34. Ng J.M.K., Yu J. Promoter hypermethylation of tumour suppressor genes as potential biomarkers in colorectal cancer. Int J Mol Sci 2015;16(2):2472–96. DOI: 10.3390/IJMS16022472
35. De Almeida B.P., Apolónio J.D., Binnie A., Castelo-Branco P. Roadmap of DNA methylation in breast cancer identifies novel prognostic biomarkers. BMC Cancer 2019;19(1):219. DOI: 10.1186/S12885-019-5403-0
36. Park J.Y. Promoter hypermethylation in prostate cancer. Cancer Control 2010;17(4):245–55. DOI: 10.1177/107327481001700405
37. Zhang W., Flemington E.K., Deng H.W., Zhang K. Epigenetically silenced candidate tumor suppressor genes in prostate cancer: identified by modeling methylation stratification and applied to progression prediction. Cancer Epidemiol Biomarkers Prev 2019;28(1):198–207. DOI: 10.1158/1055-9965.EPI-18-0491
38. Kobayashi Y., Absher D.M., Gulzar Z.G. et al. DNA methylation profiling reveals novel biomarkers and important roles for DNA methyltransferases in prostate cancer. Genome Res 2011;21(7):1017. DOI: 10.1101/GR.119487.110
39. Nakagawa T., Kanai Y., Ushijima S. et al. DNA hypermethylation on multiple CpG islands associated with increased DNA methyltransferase DNMT1 protein expression during multistage urothelial carcinogenesis. J Urol 2005;173(5):1767–71. DOI: 10.1097/01.JU.0000154632.11824.4D
40. Jin S.G., Jiang Y., Qiu R. et al. 5-hydroxymethylcytosine is strongly depleted in human cancers but its levels do not correlate with IDH1 mutations. Cancer Res 2011;71(24):7360–5. DOI: 10.1158/0008-5472.CAN-11-2023
41. Ciesielski P., Jóźwiak P., Wójcik-Krowiranda K. et al. Differential expression of ten-eleven translocation genes in endometrial cancers. Tumor Biology 2017;39(3): 1010428317695017. DOI: 10.1177/1010428317695017
42. Храброва Д.А., Якубовская М.Г., Громова E.C. Мутации в ДНК-метилтрансферазе DNMT3a при остром миелоидном лейкозе. Биохимия 2021;86(3):360–73. DOI: 10.31857/S0320972521030064
43. Wong K.K., Lawrie C.H., Green T.M. Oncogenic roles and inhibitors of DNMT1, DNMT3a, and DNMT3b in acute myeloid leukaemia. Biomark Insights 2019;14:1177271919846454. DOI: 10.1177/1177271919846454
44. Lin M.E., Hou H.A., Tsai C.H. et al. Dynamics of DNMT3a mutation and prognostic relevance in patients with primary myelodysplastic syndrome. Clin Epigenetics 2018;10(1):42. DOI: 10.1186/s13148-018-0476-1
45. Park D.J., Kwon A., Cho B.S. et al. Characteristics of DNMT3a mutations in acute myeloid leukemia. Blood Res 2020;55(1):17–26. DOI: 10.5045/BR.2020.55.1.17
46. Jawad M., Afkhami M., Ding Y. et al. DNMT3a R882 mutations confer unique clinicopathologic features in MDS including a high risk of AML transformation. Front Oncol 2022;12:12:849376. DOI: 10.3389/FONC.2022.849376
47. Liang S., Zhou X., Pan H. et al. Prognostic value of DNMT3a mutations in myelodysplastic syndromes: a meta-analysis. Hematology 2019;24(1):613–22. DOI: 10.1080/16078454.2019.1657613
48. Walter M.J., Ding L., Shen D. et al. Recurrent DNMT3a mutations in patients with myelodysplastic syndromes. Leukemia 2011;25(7):1153–8. DOI: 10.1038/leu.2011.44
49. Tripon F., Iancu M., Trifa A. et al. Modelling the effects of MCM7 variants, somatic mutations, and clinical features on acute myeloid leukemia susceptibility and prognosis. J Clin Med 2020;9(1):158. DOI: 10.3390/JCM9010158
50. Yuan X.Q., Chen P., Du Y.X. et al. Influence of DNMT3a R882 mutations on AML prognosis determined by the allele ratio in Chinese patients. J Transl Med 2019;17(1):220. DOI: 10.1186/S12967-019-1959-3
51. Shlush L.I., Zandi S., Mitchell A. et al. Identification of preleukemic hematopoietic stem cells in acute leukemia. Nature 2014;506(7488):328–33. DOI: 10.1038/NATURE13038
52. Midic D., Rinke J., Perner F. et al. Prevalence and dynamics of clonal hematopoiesis caused by leukemia-associated mutations in elderly individuals without hematologic disorders. Leukemia 2020;34(8):2198–205. DOI: 10.1038/S41375-020-0869-Y
53. Varela N.M., Guevara-Ramírez P., Acevedo C. et al. A new insight for the identification of oncogenic variants in breast and prostate cancers in diverse human populations, with a focus on Latinos. Front Pharmacol 2021;12:630658. DOI: 10.3389/FPHAR.2021.630658/FULL
54. Xiang G., Zhenkun F., Shuang C. et al. Association of DNMT1 gene polymorphisms in exons with sporadic infiltrating ductal breast carcinoma among Chinese Han women in the Heilongjiang Province. Clin Breast Cancer 2010;10(5):373–7. DOI: 10.3816/CBC.2010.N.049
55. Sun M.Y., Yang X.X., Xu W.W. et al. Association of DNMT1 and DNMT3b polymorphisms with breast cancer risk in Han Chinese women from South China. Genet Mol Res 2012;11(4):4330–41. DOI: 10.4238/2012.SEPTEMBER.26.1
56. Wang J., Li C., Wan F. et al. The rs1550117 A>G variant in DNMT3a gene promoter significantly increases non-small cell lung cancer susceptibility in a Han Chinese population. Oncotarget 2017;8(14):23470–8. DOI: 10.18632/ONCOTARGET.15625
57. Yang X.X., He X.Q., Li F.X. et al. Risk-association of DNA methyltransferases polymorphisms with gastric cancer in the Southern Chinese population. Int J Mol Sci 2012;13(7):8364–78. DOI: 10.3390/IJMS13078364
58. Kullmann K., Deryal M., Ong M.F. et al. DNMT1 genetic polymorphisms affect breast cancer risk in the central European Caucasian population. Clin Epigenetics 2013;5(1):7. DOI: 10.1186/1868-7083-5-7
59. Liu Z., Wang L., Wang L.E. et al. Polymorphisms of the DNMT3b gene and risk of squamous cell carcinoma of the head and neck: a case-control study. Cancer Lett 2008;268(1):158–65. DOI: 10.1016/j.canlet.2008.03.034
60. Xia Z., Duan F., Jing C. et al. Quantitative assessment of the association between DNMT3b-579G>T polymorphism and cancer risk. Cancer Biomark 2015;15(5):707–16. DOI: 10.3233/CBM-150512
61. Zhu S., Zhang H., Tang Y. et al. DNMT3b polymorphisms and cancer risk: a meta analysis of 24 case-control studies. Mol Biol Rep 2012;39(4):4429–37. DOI: 10.1007/S11033-011-1231-2
62. Duan F., Cui S., Song C. et al. Systematic evaluation of cancer risk associated with DNMT3b polymorphisms. J Cancer Res Clin Oncol 2015;141(7):1205–20. DOI: 10.1007/s00432-014-1894-x
63. Li H., Li W., Liu S. et al. DNMT1, DNMT3a and DNMT3b polymorphisms associated with gastric cancer risk: a systematic review and meta-analysis. EBioMedicine 2016;13:125–31. DOI: 10.1016/J.EBIOM.2016.10.028
64. Park S.H., Choi J.C., Kim S.Y. et al. Incidence and prognostic impact of DNMT3a mutations in Korean normal karyotype acute myeloid leukemia patients. BioMed Res Int 2015;2015:723682. DOI: 10.1155/2015/723682
65. Mizuno S.I., Chijiwa T., Okamura T. et al. Expression of DNA methyltransferases DNMT1,3A, and 3B in normal hematopoiesis and in acute and chronic myelogenous leukemia. Blood 2001;97(5):1172–9. DOI: 10.1182/BLOOD.V97.5.1172
66. Zhang T.J., Zhang L.C., Xu Z.J., Zhou J.D. Expression and prognosis analysis of DNMT family in acute myeloid leukemia. Aging (Albany NY) 2020;12(14):14677–90. DOI: 10.18632/AGING.103520
67. Niederwieser C., Kohlschmidt J., Volinia S. et al. Prognostic and biologic significance of DNMT3b expression in older patients with cytogenetically normal primary acute myeloid leukemia. Leukemia 2015;29(3):567–75. DOI: 10.1038/LEU.2014.267
68. Loo S.K., Suzina S.S., Musa M., Wong K.K. DNMT1 is associated with cell cycle and DNA replication gene sets in diffuse large B-cell lymphoma. Pathol Res Pract 2018;214(1):134–43. DOI: 10.1016/J.PRP.2017.10.005
69. Lin R.K., Hsu H.S., Chang J.W. et al. Alteration of DNA methyltransferases contributes to 5’CpG methylation and poor prognosis in lung cancer. Lung Cancer 2007;55(2):205–13. DOI: 10.1016/j.lungcan.2006.10.022
70. Chen X., Zhang J., Dai X. DNA methylation profiles capturing breast cancer heterogeneity. BMC Genomics 2019;20(1):823. DOI: 10.1186/s12864-019-6142-y
71. Ennour-Idrissi K., Dragic D., Issa E. et al. DNA methylation and breast cancer risk: an epigenome-wide study of normal breast tissue and blood. Cancers 2020;12(11):3088. DOI: 10.3390/cancers12113088
72. Hegde M., Joshi M.B. Comprehensive analysis of regulation of DNA methyltransferase isoforms in human breast tumors. J Cancer Res Clin Oncol 2021;147(4):937–71. DOI: 10.1007/S00432-021-03519-4
73. Husni R.E., Shiba-Ishii A., Iiyama S. et al. DNMT3a expression pattern and its prognostic value in lung adenocarcinoma. Lung Cancer 2016;97:59–65. DOI: 10.1016/j.lungcan.2016.04.018
74. Teneng I., Tellez C.S., Picchi M.A. et al. Global identification of genes targeted by DNMT3b for epigenetic silencing in lung cancer. Oncogene 2015;34(5):621–30. DOI: 10.1038/onc.2013.580
75. He D., Wang X., Zhang Y. et al. DNMT3a/3B overexpression might be correlated with poor patient survival, hypermethylation and low expression of ESR1/PGR in endometrioid carcinoma: an analysis of The Cancer Genome Atlas. Chin Med J 2019;132(2):161–70. DOI: 10.1097/CM9.0000000000000054
76. Piyathilake C.J., Badiga S., Borak S.G. et al. A higher degree of expression of DNA methyl transferase 1 in cervical cancer is associated with poor survival outcome. Int J Women’s Health 2017;9:413–20. DOI: 10.2147/IJWH.S133441
77. Cui J., Zheng L., Zhang Y., Xue M. Bioinformatics analysis of DNMT1 expression and its role in head and neck squamous cell carcinoma prognosis. Sci Rep 2021;11(1):2267. DOI: 10.1038/s41598-021-81971-5
78. Han Z., Yang B., Wang Y. et al. Identification of expression patterns and potential prognostic significance of m5C-related regulators in head and neck squamous cell carcinoma. Front Oncol 2021;11:592107. DOI: 10.3389/FONC.2021.592107/FULL
79. Zhao S.L., Zhu S.T., Hao X. et al. Effects of DNA methyltransferase 1 inhibition on esophageal squamous cell carcinoma. Dis Esophagus 2011;24(8):601–10. DOI: 10.1111/J.1442-2050.2011.01199.X
80. He M., Fan J., Jiang R. et al. Expression of DNMTs and genomic DNA methylation in gastric signet ring cell carcinoma. Mol Med Rep 2013;8(3):942–8. DOI: 10.3892/MMR.2013.1566
81. Peng D.F., Kanai Y., Sawada M. et al. DNA methylation of multiple tumor-related genes in association with overexpression of DNA methyltransferase 1 (DNMT1) during multistage carcinogenesis of the pancreas. Carcinogenesis 2006;27(6):1160–8. DOI: 10.1093/CARCIN/BGI361
82. Saito Y., Kanai Y., Nakagawa T. et al. Increased protein expression of DNA methyltransferase (DNMT) 1 is significantly correlated with the malignant potential and poor prognosis of human hepatocellular carcinomas. Int J Cancer 2003;105(4):527–32. DOI: 10.1002/IJC.11127
83. Taylor K.M., Wheeler R., Singh N. et al. The tobacco carcinogen NNK drives accumulation of DNMT1 at the GR promoter thereby reducing GR expression in untransformed lung fibroblasts. Sci Rep 2018;8(1):4903. DOI: 10.1038/s41598-018-23309-2
84. Wang P., Chu W., Zhang X. et al. Kindlin-2 interacts with and stabilizes DNMT1 to promote breast cancer development. Int J Biochem Cell Biol 2018;105:41–51. DOI: 10.1016/j.biocel.2018.09.022
85. Zhu X., Lv L., Wang M. et al. DNMT1 facilitates growth of breast cancer by inducing MEG3 hyper-methylation. Cancer Cell Int 2022;22(1):56. DOI: 10.1186/s12935-022-02463-8
86. Pathania R., Ramachandran S., Elangovan S. et al. DNMT1 is essential for mammary and cancer stem cell maintenance and tumorigenesis. Nat Commun 2015;6:6910. DOI: 10.1038/NCOMMS7910
87. Fu Y., Zhang X., Liu X. et al. The DNMT1-PAS1-PH20 axis drives breast cancer growth and metastasis. Signal Transduct Target Ther 2022;7(1):81. DOI: 10.1038/s41392-022-00896-1
88. Zhang T.J., Zhang L.C., Xu Z.J., Zhou J.D. Expression and prognosis analysis of DNMT family in acute myeloid leukemia. Aging 2020;12(14):14677–90. DOI: 10.18632/AGING.103520
89. Deng T., Kuang Y., Wang L. et al. An essential role for DNA methyltransferase 3a in melanoma tumorigenesis. Biochem Biophys Res Commun 2009;387(3):611–6. DOI: 10.1016/J.BBRC.2009.07.093
90. Zhao Z., Wu Q., Cheng J. et al. Depletion of DNMT3a suppressed cell proliferation and restored PTEN in hepatocellular carcinoma cell. J Biom Biotechnol 2010;2010:737535. DOI: 10.1155/2010/737535
91. Butcher D.T., Rodenhiser D.I. Epigenetic inactivation of BRCA1 is associated with aberrant expression of CTCF and DNA methyltransferase (DNMT3b) in some sporadic breast tumours. Eur J Cancer 2007;43(1):210–9. DOI: 10.1016/J.EJCA.2006.09.002
92. Micevic G., Muthusamy V., Damsky W. et al. DNMT3b modulates melanoma growth by controlling levels of mTORC2 component RICTOR. Cell Rep 2016;14(9):2180–92. DOI: 10.1016/J.CELREP.2016.02.010
93. Nosho K., Shima K., Irahara N. et al. DNMT3b expression might contribute to CpG island methylator phenotype in colorectal cancer. Clin Cancer Res 2009;15(11):3663–71. DOI: 10.1158/1078-0432.CCR-08-2383
94. Putiri E.L., Tiedemann R.L., Thompson J.J. et al. Distinct and overlapping control of 5-methylcytosine and 5-hydroxymethylcytosine by the TET proteins in human cancer cells. Genome Biology 2014;15(6):R81. DOI: 10.1186/gb-2014-15-6-r81.
95. Ellrott K., Bailey M.H., Saksena G. et al. Scalable open science approach for mutation calling of tumor exomes using multiple genomic pipelines. Cell Syst 2018;6(3):271–81.e7. DOI: 10.1016/J.CELS.2018.03.002
96. Taylor A.M., Shih J., Ha G. et al. Genomic and functional approaches to understanding cancer aneuploidy. Cancer Cell 2018;33(4):676–89.e3. DOI: 10.1016/J.CCELL.2018.03.007
97. Liu J., Lichtenberg T., Hoadley K.A. et al. An integrated TCGA pan-cancer clinical data resource to drive high-quality survival outcome analytics. Cell 2018;173(2):400–16.e11. DOI: 10.1016/J.CELL.2018.02.052
98. Sanchez-Vega F., Mina M., Armenia J. et al. Oncogenic signaling pathways in The Cancer Genome Atlas. Cell 2018;173(2):321–37. e10. DOI: 10.1016/J.CELL.2018.03.035
99. Gao Q., Liang W.W., Foltz S.M. et al. Driver fusions and their implications in the development and treatment of human cancers. Cell Rep 2018;23(1):227–38.e3. DOI: 10.1016/J.CELREP.2018.03.050
100. Bhandari V., Hoey C., Liu L.Y. et al. Molecular landmarks of tumor hypoxia across cancer types. Nat Genet 2019;51(2):308–18. DOI: 10.1038/s41588-018-0318-2
101. Poore G.D., Kopylova E., Zhu Q. et al. Microbiome analyses of blood and tissues suggest cancer diagnostic approach. Nature 2020;579(7800):567–74. DOI: 10.1038/s41586-020-2095-1
102. Ding L., Bailey M.H., Porta-Pardo E. et al. Perspective on oncogenic processes at the end of the beginning of cancer genomics. Cell 2018;173(2):305–20.e10. DOI: 10.1016/J.CELL.2018.03.033
103. Bonneville R., Krook M.A., Kautto E.A. et al. Landscape of microsatellite instability across 39 cancer types. JCO Precis Oncol 2017(1):1–15. DOI: 10.1200/PO.17.00073
104. Hoadley K.A., Yau C., Hinoue T. et al. Cell-of-origin patterns dominate the molecular classification of 10,000 tumors from 33 types of cancer. Cell 2018;173(2):291–304.e6. DOI: 10.1016/J.CELL.2018.03.022
105. Sweeney S.M., Cerami E., Baras A. et al. AACR Project GENIE: Powering Precision Medicine through an International Consortium. Cancer Discovery 2017;7(8):818–31. DOI: 10.1158/2159-8290.CD-17-0151
106. Lasho T.L., Vallapureddy R., Finke C.M. et al. Infrequent occurrence of TET1, TET3, and ASXL2 mutations in myelodysplastic/myeloproliferative neoplasms. Blood Cancer J 2018;8(3):32. DOI: 10.1038/s41408-018-0057-8
107. Abdel-Wahab O., Mullally A., Hedvat C. et al. Genetic characterization of TET1, TET2, and TET3 alterations in myeloid malignancies. Blood 2009;114(1):144–7. DOI: 10.1182/BLOOD-2009-03-210039
108. Yamazaki J., Taby R., Vasanthakumar A. et al. Effects of TET2 mutations on DNA methylation in chronic myelomonocytic leukemia. Epigenetics 2012;7(2):201–7. DOI: 10.4161/EPI.7.2.19015
109. Mo H.Y., An C.H., Choi E.J. et al. Somatic mutation and loss of expression of a candidate tumor suppressor gene TET3 in gastric and colorectal cancers. Pathol Res Pract 2020;216(3):152759. DOI: 10.1016/J.PRP.2019.152759
110. Wang J., Li F., Ma Z. et al. High expression of TET1 predicts poor survival in cytogenetically normal acute myeloid leukemia from two cohorts. EBioMedicine 2018;28:90–6. DOI: 10.1016/J.EBIOM.2018.01.031
111. Ahn H., Lee H.J., Lee J.H. et al. Clinicopathological correlation of PD-L1 and TET1 expression with tumor-infiltrating lymphocytes in non-small cell lung cancer. Pathol Res Pract 2020;216(11):153188. DOI: 10.1016/J.PRP.2020.153188
112. Schagdarsurengin U., Luo C., Slanina H. et al. Tracing TET1 expression in prostate cancer: discovery of malignant cells with a distinct oncogenic signature. Clinic Epigenetics 2021;13(1):1–17. DOI: 10.1186/S13148-021-01201-7/FIGURES/7
113. Ke Q., Wang K., Fan M. et al. Prognostic role of high TET1 expression in patients with solid tumors: a meta-analysis. Medicine 2020;99(44):e22863. DOI: 10.1097/MD.0000000000022863
114. Liu N.T., Perng C.L., Chou Y.C. et al. Loss of ten-eleven translocation 1 (TET1) expression as a diagnostic and prognostic biomarker of endometrial carcinoma. PloS One 2021;16(11):e0259330. DOI: 10.1371/JOURNAL.PONE.0259330
115. Pei Y.F., Tao R., Li J.F. et al. TET1 inhibits gastric cancer growth and metastasis by PTEN demethylation and re-expression. Oncotarget 2016;7(21):31322–35. DOI: 10.18632/ONCOTARGET.8900
116. Liu Y., Zhu H., Zhang Z. et al. Effects of a single transient transfection of Ten-eleven translocation 1 catalytic domain on hepatocellular carcinoma. PLoS One 2018;13(12):e0207139. DOI: 10.1371/JOURNAL.PONE.0207139
117. Guo H., Zhu H., Zhang J. et al. TET1 suppresses colon cancer proliferation by impairing β-catenin signal pathway. J Cell Biochem 2019;120(8):12559–65. DOI: 10.1002/JCB.28522.
118. Tian Y., Pan F., Sun X. et al. Association of TET1 expression with colorectal cancer progression. Scand J Gastroenterol 2017;52(3):312–20. DOI: 10.1080/00365521.2016.1253767
119. Zhang T.J., Zhou J.D., Yang D.Q. et al. TET2 expression is a potential prognostic and predictive biomarker in cytogenetically normal acute myeloid leukemia. J Cell Physiol 2018;233(8):5838– 46. DOI: 10.1002/JCP.26373
120. Zhang P., Weng W.W., Chen P. et al. Low expression of TET2 gene in pediatric acute lymphoblastic leukemia is associated with poor clinical outcome. Int J Lab Hematol 2019;41(5):702–9. DOI: 10.1111/IJLH.13099
121. Zhang W., Shao Z.H., Fu R. et al. TET2 Expression in bone marrow mononuclear cells of patients with myelodysplastic syndromes and its clinical significances. Cancer Biol Med 2012;9(1):34–7. DOI: 10.3969/J.ISSN.2095-3941.2012.01.006
122. Zhang L.-Y., Li P.-Y., Wang T.Z., Zhang X.-C. Prognostic values of 5-hmC, 5-mC and TET2 in epithelial ovarian cancer. Arch Gynecol Obstet 2015;292(4):891–7. DOI: 10.1007/S00404-015-3704-3
123. Nickerson M.L., Das S., Im K.M. et al. TET2 binds the androgen receptor and loss is associated with prostate cancer. Oncogene 2017;36(15):2172–83. DOI: 10.1038/onc.2016.376.
124. Zhong X., Liu D., Hao Y. et al. The expression of TET3 regulated cell proliferation in HepG2 cells. Gene 2019;698:113–9. DOI: 10.1016/J.GENE.2019.02.040
125. Xu F., Liu Z., Liu R. et al. Epigenetic induction of tumor stemness via the lipopolysaccharide-TET3-HOXB2 signaling axis in esophageal squamous cell carcinoma. Cell Commun Signal 2020;18(1):17. DOI: 10.1186/S12964-020-0510-8
126. Chi J., Zhang W., Li Y. et al. TET3 mediates 5hmC level and promotes tumorigenesis by activating AMPK pathway in papillary thyroid cancer. Int J Endocrinol 2022;2022:2658727. DOI: 10.1155/2022/2658727
127. Misawa K., Imai A., Mochizuki D. et al. Association of TET3 epigenetic inactivation with head and neck cancer. Oncotarget 2018;9(36):24480–93. DOI: 10.18632/ONCOTARGET.25333
128. Carella A., Tejedor J.R., García M.G. et al. Epigenetic downregulation of TET3 reduces genome-wide 5hmC levels and promotes glioblastoma tumorigenesis. Int J Cancer 2020;146(2):373–87. DOI: 10.1002/IJC.32520
129. Cui Q., Yang S., Ye P. et al. Downregulation of TLX induces TET3 expression and inhibits glioblastoma stem cell self-renewal and tumorigenesis. Nat Commun 2016;7(1):106307. DOI: 10.1038/ncomms10637
130. Bhattacharyya S., Pradhan K., Campbell N. et al. Altered hydroxymethylation is seen at regulatory regions in pancreatic cancer and regulates oncogenic pathways. Genome Res 2017;27(11):1830–42. DOI: 10.1101/GR.222794.117/-/DC1
131. Cao T., Pan W., Sun X., Shen H. Increased expression of TET3 predicts unfavorable prognosis in patients with ovarian cancer – a bioinformatics integrative analysis. J Ovarian Res 2019;12(1):101. DOI: 10.1186/S13048-019-0575-4/FIGURES/4
132. Zhang T., Zhao Y., Zhao Y., Zhou J. Expression and prognosis analysis of TET family in acute myeloid leukemia. Aging 2020;12(6):5031–47. DOI: 10.18632/AGING.102928
133. Alzahayqa M., Jamous A., Khatib A.A.H., Salah Z. TET1 isoforms have distinct expression pattern, localization and regulation in breast cancer. Front Oncol 2022;12:848544. DOI: 10.3389/FONC.2022.848544
134. Collignon E., Canale A., Wardi C. et al. Immunity drives TET1 regulation in cancer through NF-κB. Sci Adv 2018;4(6):eaap7309. DOI: 10.1126/SCIADV.AAP7309
135. Zhang J., Kuang L., Li Y. et al. Metformin regulates TET2 expression to inhibit endometrial carcinoma proliferation: a new mechanism. Front Oncol 2022;12:856707. DOI: 10.3389/FONC. 2022.856707
Рецензия
Для цитирования:
Максимова В.П., Усалка О.Г., Макусь Ю.В., Попова В.Г., Трапезникова Е.С., Хайриева Г.И., Сагитова Г.Р., Жидкова Е.М., Прус А.Ю., Якубовская М.Г., Кирсанов К.И. Нарушение метилирования ДНК при злокачественных новообразованиях. Успехи молекулярной онкологии. 2022;9(4):24‑40. https://doi.org/10.17650/2313-805X-2022-9-4-24-40
For citation:
Maksimova V.P., Usalka O.G., Makus Yu.V., Popova V.G., Trapeznikova E.S., Khayrieva G.I., Sagitova G.R., Zhidkova E.M., Prus A.Yu., Yakubovskaya M.G., Kirsanov K.I. Aberrations of DNA methylation in cancer. Advances in Molecular Oncology. 2022;9(4):24‑40. (In Russ.) https://doi.org/10.17650/2313-805X-2022-9-4-24-40