Autophagy activation in breast cancer cells in vitro after the treatment with PI3K/AKT/mTOR inhibitors
- Authors: Grigoreva D.D.1, Zhidkova E.M.1, Lylova E.S.1, Enikeev A.D.1, Kirsanov K.I.1,2, Belitsky G.A.1, Yakubovskaya M.G.1, Lesovaya E.A.1,3
-
Affiliations:
- N.N. Blokhin National Medical Russian Research Center of Oncology, Ministry of Health of Russia
- Peoples’ Friendship University of Russia
- I.P. Pavlov Ryazan State Medical University, Ministry of Health of Russia
- Issue: Vol 9, No 4 (2022)
- Pages: 61‑70
- Section: RESEARCH ARTICLES
- Published: 17.12.2022
- URL: https://umo.abvpress.ru/jour/article/view/477
- DOI: https://doi.org/10.17650/2313-805X-2022-9-4-61-70
- ID: 477
Cite item
Full Text
Abstract
Introduction. Current chemotherapy of breast cancer has a wide range of disadvantages, in particular, the development of therapy-related infections and hormonal imbalance. Combination of main cytostatic with glucocorticoids allows to broaden its therapeutic interval and to decrease the total toxicity of the treatment. However, long-term treatment with glucocorticoids leads to the development of severe side effects via activation of multiple molecular mechanisms. Thus, glucocorticoids activate prosurvival mTOR-dependent autophagy. Therefore, the evaluation of PI3K (phosphoinositide 3-kinases) / Akt (protein kinase B) / mTOR (mammalian target of rapamycin) inhibitors as adjuvants for breast cancer therapy is important for optimization of treatment protocol.
Aim. Analysis of the effects of PI3K/Akt/mTOR inhibitors, rapamycin, wortmannin and LY-294002 in combination with glucocorticoids in breast cancer cell lines of different subtypes.
Materials and methods. We demonstrated the inhibition of PI3K/Akt/mTOR signaling and the autophagy induction after the treatment of breast cancer cells with rapamycin, wortmannin and LY-294002 by Western blotting analysis of Beclin-1, phospho-Beclin-1 (Ser93 and Ser30).
Conclusion. PI3K/Akt/mTOR inhibitors in combination with Dexamethasone cooperatively inhibited mTOR signaling and activated autophagy in breast cancer cells in vitro.
About the authors
D. D. Grigoreva
N.N. Blokhin National Medical Russian Research Center of Oncology, Ministry of Health of Russia
Author for correspondence.
Email: grigodidmit@gmail.com
ORCID iD: 0000-0003-2675-089X
Diana Dmitrievna Grigoreva
24 Kashirskoye Shosse, Moscow 115522
Russian FederationE. M. Zhidkova
N.N. Blokhin National Medical Russian Research Center of Oncology, Ministry of Health of Russia
Email: fake@neicon.ru
ORCID iD: 0000-0003-3318-9391
24 Kashirskoye Shosse, Moscow 115522
Russian FederationE. S. Lylova
N.N. Blokhin National Medical Russian Research Center of Oncology, Ministry of Health of Russia
Email: fake@neicon.ru
ORCID iD: 0000-0001-6388-1624
4 Kashirskoye Shosse, Moscow 115522
Russian FederationA. D. Enikeev
N.N. Blokhin National Medical Russian Research Center of Oncology, Ministry of Health of Russia
Email: fake@neicon.ru
ORCID iD: 0000-0002-7628-8616
24 Kashirskoye Shosse, Moscow 115522
Russian FederationK. I. Kirsanov
N.N. Blokhin National Medical Russian Research Center of Oncology, Ministry of Health of Russia; Peoples’ Friendship University of Russia
Email: fake@neicon.ru
ORCID iD: 0000-0002-8599-6833
24 Kashirskoye Shosse, Moscow 115522
6 Miklukho-Maklaya St., Moscow 117198
Russian FederationG. A. Belitsky
N.N. Blokhin National Medical Russian Research Center of Oncology, Ministry of Health of Russia
Email: fake@neicon.ru
24 Kashirskoye Shosse, Moscow 115522
Russian FederationM. G. Yakubovskaya
N.N. Blokhin National Medical Russian Research Center of Oncology, Ministry of Health of Russia
Email: fake@neicon.ru
ORCID iD: 0000-0002-9710-8178
24 Kashirskoye Shosse, Moscow 115522
Russian FederationE. A. Lesovaya
N.N. Blokhin National Medical Russian Research Center of Oncology, Ministry of Health of Russia; I.P. Pavlov Ryazan State Medical University, Ministry of Health of Russia
Email: fake@neicon.ru
ORCID iD: 0000-0002-1967-9637
24 Kashirskoye Shosse, Moscow 115522
9 Vysokovol’tnaya St., Ryazan 390026
Russian FederationReferences
- Rezanejad Gatabi Z., Mirhoseini M., Khajeali N. et al. The Accuracy of electrical impedance tomography for breast cancer detection: a systematic review and meta-analysis. Breast J 2022;2022:8565490. doi: 10.1155/2022/8565490
- Onitilo A.A., Engel J.M., Greenlee R.T. et al. Breast cancer subtypes based on ER/PR and Her2 expression: comparison of clinicopathologic features and survival. Clin Med Res 2009; 7(1–2):4–13. doi: 10.3121/cmr.2009.825
- Vaidya J.S., Baldassarre G., Thorat M.A. et al. Role of glucocorticoids in breast cancer. Curr Pharm Des 2010;16(32):3593–600. doi: 10.2174/138161210793797906
- Slamon D.J., Leyland-Jones B., Shak S. et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 2001;344(11): 783–92. doi: 10.1056/NEJM200103153441101
- Piccart-Gebhart M.J., Procter M., Leyland-Jones B. et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med 2005;353(16):1659–72. doi: 10.1056/NEJMoa052306
- Cidlowski J.A. Glucocorticoids and their actions in cells. Retina 2009;29(Suppl. 6):21–3. doi: 10.1097/IAE. 0b013e3181ad2636
- Zhidkova E.M., Kuzin K.A., Tilova L.R. et al. Comparative analysis of biological effects of selective activator of the glucocorticoid receptor CpdA on different subtypes of breast cancer cell lines. Sibirskij onkologicheskij zhurnal = Siberian Journal of Oncology. 2017;16(6):41–6. (In Russ.). doi: 10.21294/1814-4861-2017-16-6-41-46
- Conzen S.D. Recent advances in understanding glucocorticoid receptor function in cancer. Clin Adv Hematol Oncol 2017;15(5):338–40.
- Kach J., Conzen S.D., Szmulewitz R.Z. Targeting the glucocorticoid receptor in breast and prostate cancers. Sci Transl Med 2015;7(305):19. doi: 10.1126/scitranslmed.aac7531
- Vandewalle J., Luypaert A., De Bosscher K. et al. Therapeutic mechanisms of glucocorticoids. Trends Endocrinol Metab 2018;29(1):42–54. doi: 10.1016/j.tem.2017.10.010
- Britto F.A., Cortade F., Belloum Y. et al. Glucocorticoid-dependent REDD1 expression reduces muscle metabolism to enable adaptation under energetic stress. BMC Biol 2018;16(1):65. doi: 10.1186/s12915-018-0525-4
- Baida G., Bhalla P., Kirsanov K. et al. REDD1 functions at the crossroads between the therapeutic and adverse effects of topical glucocorticoids. EMBO Mol Med 2015;7(1):42–58. doi: 10.15252/emmm.201404601
- Baida G., Bhalla P., Yemelyanov A. et al. Deletion of the glucocorticoid receptor chaperone FKBP51 prevents glucocorticoid-induced skin atrophy. Oncotarget 2018;9(78):34772–83. doi: 10.18632/oncotarget.26194
- Li Z., Chen B., Wu Y. et al. Genetic and epigenetic silencing of the beclin 1 gene in sporadic breast tumors. BMC Cancer 2010;10:98. doi: 10.1186/1471-2407-10-98
- Zhu R., Yang G., Cao Z. et al. The prospect of serum and glucocorticoid-inducible kinase 1 (SGK1) in cancer therapy: a rising star. Ther Adv Med Oncol 2020;12:1758835920940946. doi: 10.1177/1758835920940946
- Wu W., Chaudhuri S., Brickley D.R. et al. Microarray analysis reveals glucocorticoid-regulated survival genes that are associated with inhibition of apoptosis in breast epithelial cells. Cancer Res 2004;64(5):1757–64. doi: 10.1158/0008-5472.can-03-2546
- Melhem A., Yamada S.D., Fleming G.F. et al. Administration of glucocorticoids to ovarian cancer patients is associated with expression of the anti-apoptotic genes SGK1 and MKP1/DUSP1 in ovarian tissues. Clin Cancer Res 2009;15(9):3196–204. doi: 10.1158/1078-0432.CCR-08-2131
- Karvonen H., Arjama M., Kaleva L. et al. Glucocorticoids induce differentiation and chemoresistance in ovarian cancer by promoting ROR1-mediated stemness. Cell Death Dis 2020;11(9):790. doi: 10.1038/s41419-020-03009-4
- Sorrentino G., Ruggeri N., Zannini A. et al. Glucocorticoid receptor signalling activates YAP in breast cancer. Nat Commun 2017;8:14073. doi: 10.1038/ncomms14073
- Ohnaka K. Wnt signaling and glucocorticoid-induced osteoporosis. Clin Calcium 2006;16(11):1812–6. DOI: CliCa061118121816
- Polman J.A., Hunter R.G., Speksnijder N. et al. Glucocorticoids modulate the mTOR pathway in the hippocampus: differential effects depending on stress history. Endocrinology 2012;153(9):4317–27. doi: 10.1210/en.2012-1255
- Hirose I., Kanda A., Noda K. et al. Glucocorticoid receptor inhibits Muller glial galectin-1 expression via DUSP1-dependent and -independent deactivation of AP-1 signalling. J Cell Mol Med 2019;23(10):6785–96. doi: 10.1111/jcmm.14559
- Lesovaya E.A., Savinkova A.V., Morozova O.V. et al. A novel approach to safer glucocorticoid receptor-targeted anti-lymphoma therapy via REDD1 (regulated in development and DNA damage 1) inhibition. Mol Cancer Ther 2020;19(9):1898–908. doi: 10.1158/1535-7163.MCT-19-1111
- Grigorieva D.D., Zhidkova E.M., Lylova E.S. et al. Inhibition of glucocorticoid-induced REDD1 expression by rapamycin in breast cancer cells. Uspekhi molekulyarnoy onkologii = Advances in Molecular Oncology 2022;9(1): 42–7. (In Russ.). doi: 10.17650/2313-805X-2022-9-1-42-47
- Molitoris J.K., McColl K.S., Swerdlow S. et al. Glucocorticoid elevation of dexamethasone-induced gene 2 (Dig2/RTP801/REDD1) protein mediates autophagy in lymphocytes. J Biol Chem 2011;286(34):30181–9. doi: 10.1074/jbc.M111.245423
- Parzych K.R., Klionsky D.J. An overview of autophagy: morphology, mechanism, and regulation. Antioxid Redox Signal 2014;20(3):460–73. doi: 10.1089/ars.2013.5371
- Yun C.W., Lee S.H. The roles of autophagy in cancer. Int J Mol Sci 2018;19:11. doi: 10.3390/ijms19113466
- Bhat P., Kriel J., Shubha Priya B. et al. Modulating autophagy in cancer therapy: advancements and challenges for cancer cell death sensitization. Biochem Pharmacol 2018;147:170–82. doi: 10.1016/j.bcp.2017.11.021
- Wang Y., Zhang H. Regulation of autophagy by mTOR signaling pathway. Adv Exp Med Biol 2019;1206:67–83. doi: 10.1007/978-981-15-0602-4_3
- Romero M.A., Bayraktar Ekmekcigil O., Bagca B.G. et al. Role of autophagy in breast cancer development and progression: opposite sides of the same coin. Adv Exp Med Biol 2019;1152:65–73. doi: 10.1007/978-3-030-20301-6_5
- Kang R., Zeh H.J., Lotze M.T. et al. The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ 2011;18(4):571–80. doi: 10.1038/cdd.2010.191
- Vega-Rubin-de-Celis S. The role of Beclin 1-dependent autophagy in cancer. Biology (Basel) 2019;9(1). doi: 10.3390/biology9010004
- Liang X.H., Jackson S., Seaman M. et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 1999;402(6762):672–6. doi: 10.1038/45257
- Qu X., Yu J., Bhagat G. et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest 2003;112(12):1809–20. doi: 10.1172/JCI20039
- Valente G., Morani F., Nicotra G. et al. Expression and clinical significance of the autophagy proteins BECLIn 1 and LC3 in ovarian cancer. Biomed Res Int 2014;2014:462658. doi: 10.1155/2014/462658
- Tang H., Sebti S., Titone R. et al. Decreased BECN1 mRNA expression in human breast cancer is associated with estrogen receptor-negative subtypes and poor prognosis. EBioMedicine 2015;2(3):255–63. doi: 10.1016/j.ebiom.2015.01.008
- Gao J., Cheng T.S., Qin A. et al. Glucocorticoid impairs cell-cell communication by autophagy-mediated degradation of connexin 43 in osteocytes. Oncotarget 2016;7(19):26966–78. doi: 10.18632/oncotarget.9034
- Loffing J., Flores S.Y., Staub O. Sgk kinases and their role in epithelial transport. Annu Rev Physiol 2006;68:461–90. doi: 10.1146/annurev.physiol.68.040104.131654
- Hall B.A., Kim T.Y., Skor M.N. et al. Serum and glucocorticoidregulated kinase 1 (SGK1) activation in breast cancer: requirement for mTORC1 activity associates with ER-alpha expression. Breast Cancer Res Treat 2012;135(2):469–79. doi: 10.1007/s10549-012-2161-y
- Jiang L., Xu L., Xie J. et al. Inhibition of autophagy overcomes glucocorticoid resistance in lymphoid malignant cells. Cancer Biol Ther 2015;16(3):466–76. doi: 10.1080/15384047.2015.1016658
- Surjit M., Ganti K.P., Mukherji A. et al. Widespread negative response elements mediate direct repression by agonist-liganded glucocorticoid receptor. Cell 2011;145(2):224–41. doi: 10.1016/j.cell.2011.03.027
- Komakech A., Im J.H., Gwak H.S. et al. Dexamethasone interferes with autophagy and affects cell survival in irradiated malignant glioma cells. J Korean Neurosurg Soc 2020;63(5):566–78. doi: 10.3340/jkns.2019.0187
- Chen S., Rehman S.K., Zhang W. et al. Autophagy is a therapeutic target in anticancer drug resistance. Biochim Biophys Acta 2010;1806(2):220–9. doi: 10.1016/j.bbcan.2010.07.003
- Mabuchi S., Ohmichi M., Kimura A. et al. Estrogen inhibits paclitaxel-induced apoptosis via the phosphorylation of apoptosis signal-regulating kinase 1 in human ovarian cancer cell lines. Endocrinology 2004;145(1):49–58. doi: 10.1210/en.2003-0792
- Stephan S., Datta K., Wang E. et al. Effect of rapamycin alone and in combination with antiangiogenesis therapy in an orthotopic model of human pancreatic cancer. Clin Cancer Res 2004;10(20):6993–7000. doi: 10.1158/1078-0432.CCR-04-0808
- Abrams S.L., Steelman L.S., Shelton J.G. et al. Enhancing therapeutic efficacy by targeting non-oncogene addicted cells with combinations of signal transduction inhibitors and chemotherapy. Cell Cycle 2010;9(9):1839–46. doi: 10.4161/cc.9.9.11544
- Rexer B.N., Engelman J.A., Arteaga C.L. Overcoming resistance to tyrosine kinase inhibitors: lessons learned from cancer cells treated with EGFR antagonists. Cell Cycle 2009;8(1):18–22. doi: 10.4161/cc.8.1.7324
- Holloway R.W., Marignani P.A. Targeting mTOR and glycolysis in HER2-positive breast cancer. Cancers (Basel) 2021;13(12):2922. doi: 10.3390/cancers13122922
- Mery B., Poulard C., Le Romancer M. et al. Targeting AKT in ERpositive HER2-negative metastatic breast cancer: from molecular promises to real life pitfalls? Int J Mol Sci 2021;22(24):13512. doi: 10.3390/ijms222413512
- Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteindye binding. Anal Biochem 1976;72:248–54. doi: 10.1006/abio.1976.9999
- Menon M.B., Dhamija S. Beclin 1 phosphorylation – at the center of autophagy regulation. Front Cell Dev Biol 2018;6:137. doi: 10.3389/fcell.2018.00137
- Ducker G.S., Atreya C.E., Simko J.P. et al. Incomplete inhibition of phosphorylation of 4E-BP1 as a mechanism of primary resistance to ATP-competitive mTOR inhibitors. Oncogene 2014;33(12):1590–600. doi: 10.1038/onc.2013.92
- Gremke N., Polo P., Dort A. et al. mTOR-mediated cancer drug resistance suppresses autophagy and generates a druggable metabolic vulnerability. Nat Commun 2020;11(1):4684. doi: 10.1038/s41467-020-18504-7
- Yellen P., Saqcena M., Salloum D. et al. High-dose rapamycin induces apoptosis in human cancer cells by dissociating mTOR complex 1 and suppressing phosphorylation of 4E-BP1. Cell Cycle 2011;10(22):3948–56. doi: 10.4161/cc.10.22.18124
- Easton J.B., Houghton P.J. Therapeutic potential of target of rapamycin inhibitors. Expert Opin Ther Targets 2004;8(6):551–64. doi: 10.1517/14728222.8.6.551
- Dowling R.J., Topisirovic I., Alain T. et al. mTORC1-mediated cell proliferation, but not cell growth, controlled by the 4E-BPs. Science 2010;328(5982):1172–6. doi: 10.1126/science.1187532
- Qian X., Li X., Cai Q. et al. Phosphoglycerate kinase 1 phosphorylates beclin1 to induce autophagy. Mol Cell 2017;65(5):917–31. doi: 10.1016/j.molcel.2017.01.027
Supplementary files


