Preview

Advances in Molecular Oncology

Advanced search

Neuroendocrine tumors of the digestive system: pathologic and molecular characteristics

https://doi.org/10.17650/2313-805X.2015.2.1.052-060

Abstract

This review deals with the analysis of up-to-date concepts of the human neuroendocrine tumors (NETs) of the digestive system, which are a heterogeneous group of epithelial neoplasms arising from the diffuse neuroendocrine system of the gastrointestinal tract and pancreas. The review summarizes the information about the specifics of the recent histological classifications and criteria of diagnosis the different types of neuroendocrine neoplasms accounting histological and immunohistochemical parameters. In the light of these criteria, current issues of the nomenclature, as well as systems of grading and staging are discussed. Well-differentiated NETs generally present characteristic histopathological features with nests, trabecular or gland-like formations, low mitotic activity and Ki-67 labeling indices and are mostly classified as either G1 or G2 NET. In contrast, poorly differentiated neuroendocrine carcinomas have diffuse growth pattern, high-grade nuclear atypia and cellular proliferation, necrosis. They are always classified as G3 and further subclassified into small-cell or large-cell types based on their histological features. Immunohistochemistry is a powerful tool in confirming neuroendocrine differentiation of tumor cells by the expression of chromogranin A and/or synaptophysin. The grade (G) is based on the proliferative activity of the tumor assessed by the mitotic rate or by Ki-67 immunohistochemistry. Several markers are useful in the identification of a primary organ of NETs in metastatic lesions are also discussed. NETs represent challenging neoplasms in terms of clinical management and prognosis assessment. Morphology alone and immunophenotypic features have no specific predictive implications. Ki-67 has been proven the only significant prognostic marker and can predict response to therapy. Additionally, data on key signaling pathways and potential predictive molecular markers involved in the development of neuroendocrine tumors of the gastrointestinal tract and pancreas are presented in this review. New molecular targeted therapies have become available in patients with NETs. Somatostatin receptors (SSTRs) are expressed by these tumors and show high affinity for somatostatin analogues. Immunohistochemical positive staining, especially of the subtype SSTR 2А, has been shown to be well associated with therapeutic response to somatostatin analogue therapy. Detecting the expression of SSTRs helps to predict not only the efficacy of treatment but also the prognosis in NETs. The PI3K/AKT/mTOR signaling pathway plays a crucial role in development of neuroendocrine neoplasms and is targeted by specific inhibitors. However, the exact cellular molecules, which may help predict response, their expression levels and prognostic values are still to be defined. Determining specific prognostic and predictive molecular markers in NETs can significantly improve biological and morphological characterization of individual neuroendocrine neoplasms and identification of patients that may benefit from targeted therapy.

About the Author

V. V. Delektorskaya
Scientific Research Institute of Clinical Oncology, N.N. Blokhin Russian Cancer Research Center
Russian Federation

24 Kashirskoye Highway, Moscow, 115478, Russia



References

1. Klöppel G. Tumour biology and histopathology of neuroendocrine tumours. Best Pract Res Clin Endocrinol Metab 2007;21(1):15–31.

2. Klöppel G. Classification and pathology of gastroenteropancreatic neuroendocrine neoplasms. Endocr Relat Cancer 2011;18 Suppl 1:S1–16.

3. Modlin I. M., Oberg K., Chung D. C. et al. Gastroenteropancreatic neuroendocrine tumours. Lancet Oncol 2008;9(1):61–72.

4. Öberg K. E. Gastrointestinal neuroendocrine tumors. Ann Oncol 2010;21(Suppl 7):vii72–80.

5. Yao J. C., Hassan M., Phan A. et al. One hundred years after “carcinoid”: epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. Review. J Clin Oncol 2008;26(18):3063–72.

6. Oberndorfer S. Kazinoide tumoren des Dunndarms. Z Pathol Frankf 1907;1:426–32.

7. Soga J. The term «carcinoid» is a misnomer: the evidence based on local invasion. J Exp Clin Cancer Res 2009;28:15.

8. Anlauf M., Gerlach P., Schott M. et al. Pathology of neuroendocrine neoplasms. Chirurg 2011;82(7):567–73.

9. Caplin M., Yao J. C. An overview of thoracic and gastrointestinal neuroendocrine tumours. In: Caplin M., Yao J. C. (eds.). Handbook of gastroenteropancreatic and thoracic neuroendocrine tumours. BioScientifica, 2011. Pp. 1–9.

10. Reid M.D., Balci S., Saka B., Adsay N.V. Neuroendocrine tumors of the pancreas: current concepts and controversies. Endocr Pathol 2014;25(1):65–79.

11. Zhou C., Zhang J., Zheng Y., Zhu Z. Pancreatic neuroendocrine tumors: a comprehensive review. Int J Cancer 2012;131(5):1013–22.

12. Ordóñez N.G., Mackay B. Electron microscopy in tumor diagnosis: indications for its use in the immunohistochemical era. Hum Pathol 1998;29(12):1403–11.

13. Kandel R., Bedard Y.C., Fan Q.H. Value of electron microscopy and immunohistochemistry in the diagnosis of soft tissue tumors. Ultrastruct Pathol 1998;22(2):141–6.

14. Öberg K. Carcinoid tumors: molecular genetics, tumor biology, and update of diagnosis and treatment. Curr Opin Oncol 2002;14(1):38–45.

15. Rindi G., Wiedenmann B. Neuroendocrine neoplasms of the gut and pancreas: new insights. Nat Rev Endocrinol 2011;8(1):54–64.

16. Partelli S., Maurizi A., Tamburrino D. et al. GEP-NETS update: a review on surgery of gastro-entero-pancreatic neuroendocrine tumors. Eur J Endocrinol 2014;171(4): R153–62.

17. Strosberg J.R., Nasir A., Hodul P., Kvols L. Biology and treatment of metastatic gastrointestinal neuroendocrine tumors. Gastrointest Cancer Res 2008;2(3):113–25.

18. Pape U. F., Berndt U., Muller-Nordhorn J. et al. Prognostic factors of long-term outcome in gastroenteropancreatic neuroendocrine tumours. Endocr Relat Cancer 2008;15(4):1083– 97.

19. Solcia E., Klöppel G., Sobin L. Histological typing of endocrine tumours. 2nd ed. WHO, Berlin: Springer, 2000.

20. Klöppel G., Perren A., Heitz P. U. The gastroenteropancreatic neuroendocrine cell system and its tumors: the WHO classification. Ann NY Acad Sci 2004;1014:13–27.

21. Perren A., Schmitt A., Komminoth P., Pavel M. Classification of gastro-enteropancreatic neuroendocrine tumors. Radiologe 2009;49(3):198–205.

22. Rindi G., Klöppel G., Alhman H. et al.TNM staging of foregut (neuro) endocrine tumors: a consensus proposal including a grading system. Virchows Arch 2006;449(4):395–401.

23. Klöppel G., Rindi G., Perren A. et al. The ENETS and AJCC / UICC TNM classifications of the neuroendocrine tumorsof the gastrointestinal tract and the pancreas: a statement. Virchows Arch 2010;456(6):595–7.

24. Scarpa A., Mantovani W., Capelli P. et al. Pancreatic endocrine tumors: improved TNM staging and histopathological grading permit a clinically efficient prognostic stratification of patients. Mod Pathol 2010;23(6): 824–33.

25. Strosberg J., Nasir A., Coppola D. et al. Correlation between grade and prognosis in metastatic Gastroenteropancreatic neuroendocrine tumors. Hum Pathol 2009;40(9):1262–68.

26. Bosman F. T., Carneiro F. T., Hrubon R. H. et al. (eds.) World Health Organization classification of tumours, pathology and genetics of tumours of the digestive system. Lyon: IARC Press, 2010.

27. Yang M., Tian B. L., Zhang Y. et al. Evaluation of the World Health Organization 2010 grading system in surgical outcome and prognosis of pancreatic neuroendocrine tumors. Pancreas 2014;43(7):1003–8.

28. Scoazec J. Y., Couvelard A. Gastroenteropancreatic neuroendocrine tumors: what must the pathologist know and do in 2014? Ann Pathol 2014;34(1):40–50.

29. Basturk O., Tang L., Hruban R. H. et al. Poorly differentiated neuroendocrine carcinomas of the pancreas: a clinicopathologic analysis of 44 cases. Am J Surg Pathol 2014;38(4):437–47.

30. Krieg A., Mersch S., Boeck I. et al. New model for gastroenteropancreatic large-cell neuroendocrine carcinoma: establishment of two clinically relevant cell lines. PLoS One 2014;9(2):e88713.

31. Kachare S. D., Liner K. R., Vohra N. A. et al. A modified duodenal neuroendocrine tumor staging schema better defines the risk of lymph node metastasis and disease-free survival. Am Surg 2014;80(8):821–6.

32. Rindi G., Bordi C., Rappel S. et al. Gastric carcinoids and neuroendocrine carcinomas: pathogenesis, pathology, and behavior. World J Surg 1996;20(2):169–72.

33. Krampitz G. W., Norton J. A., Poultsides G. A. et al. Lymph nodes and survival in pancreatic neuroendocrine tumors. Arch Surg 2012;147(9):820–7.

34. Ricci C., Casadei R., Taffurelli G. et al. WHO 2010 classification of pancreatic endocrine tumors. Is the new always better than the old? Pancreatology 2014;14(6):539–41.

35. Shi C., Klimstra D. S. Pancreatic neuroendocrine tumors: pathologic and molecular characteristics. Semin Diagn Pathol 2014;31(6):498–511.

36. Amador Cano A., García F., Espinoza A. et al. Nonfunctional neuroendocrine tumor of the pancreas: Case report and review of the literature. Int J Surg Case Rep 2013;4(2):225–8.

37. Panzuto F., Boninsegna L., Fazio N. et al. Metastatic and locally advanced pancreatic endocrine carcinomas: analysis of factors associated with disease progression. J Clin Oncol 2011;29(17):2372–7.

38. Klimstra D. S. Pathology reporting of neuroendocrine tumors: essential elements for accurate diagnosis, classification, and staging. Semin Oncol 2013;40(1):23–36.

39. Remes S. M., Tuominen V. J., Helin H. et al. Grading of neuroendocrine tumors with Ki-67 requires high-quality assessment practices. Am J Surg Pathol 2012;36(9):1359–63.

40. Adsay V. Ki67 labeling index in neuroendocrine tumors of the gastrointestinal and pancreatobiliary tract: to count or not to count is not the question, but rather how to count. Am J Surg Pathol 2012;36(12): 1743–6.

41. Jamali M., Chetty R. Predicting prognosis in gastroentero-pancreatic neuroendocrine tumors: an overview and the value of Ki-67 immunostaining. Endocr Pathol 2008;19(4):282–8.

42. Boninsegna L., Panzuto F., Partelli S. et al. Malignant pancreatic neuroendocrine tumour: lymph node ratio and Ki67 are predictors of recurrence after curative resections. Eur J Cancer 2012;48(11): 1608–15.

43. Dhall D., Mertens R., Bresee C. et al. Ki-67 proliferative index predicts progression-free survival of patients with well-differentiated ileal neuroendocrine tumors. Hum Pathol 2012;43(4):489–95.

44. DeLellis R. A., Shin S. J., Treaba O. D. Chapter 10: Immunohistology of endocrine tumors. In: Dabbs D. J. (ed.) Diagnostic immunohistochemistry: theranostic and genomic applications. 3rd ed. Elsevier Inc., 2010. Pp. 291–329.

45. Mertz H., Vyberg M., Paulsen S. M., Teglbjærg P. S. Immunohistochemical detection of neuroendocrine markers in tumors of the lungs and gastrointestinal tract. Appl Immunohistochem 1998;6:175–80.

46. Klimstra D. S., Modlin I. R., Adsay N.V. et al. Pathology reporting of neuroendocrine tumors: application of the Delphic consensus process to the development of a minimum pathology data set. Am J Surg Pathol 2010;34(3):300–13.

47. Marchevsky A. M., Gupta R., Balzer B. Diagnosis of metastatic neoplasms: a clinicopathologic and morphologic approach. Arch Pathol Lab Med 2010;134(2):194–206.

48. Krishna M. Diagnosis of metastatic neoplasms: an immunohistochemical approach. Arch Pathol Lab Med 2010;134(2):207–15.

49. Couvelard A., Deschamps L., Ravaud P. et al. Heterogeneity of tumor prognostic markers: a reproducibility study applied to liver metastases of pancreatic endocrine tumors. Mod Pathol 2009;22(2):273–81.

50. Leteurtre E. Pathologic diagnostic for a primary of metastatic neuroendocrine tumor. Ann Pathol 2011;31(5 Suppl):S79–80.

51. Sagi A., Alexis D., Remotti F., Bhagat G. Usefulness of CDX2 and TTF-1 in differentiating gastrointestinal from pulmonary carcinoids. Am J Clin Pathol 2005;123(3):394–404.

52. Kaufmann O., Dietel M. Expression of thyroid transcription factor-1 in pulmonary and extrapulmonary small cell carcinomas and other neuroendocrine carcinomas of various primary sites. Histopathology 2000;36(5):415–20.

53. Schmitt A.M., Riniker F., Anlauf M. Islet 1 (Isl1) expression is a reliable marker for pancreatic endocrine tumors and their metastases. Am J Surg Pathol 2008;32(3): 420–5.

54. Srivastava A., Hornick J.L. Immunohisto chemical staining for CDX-2, PDX-1, NESP-55, and TTF-1 can help distinguish gastrointestinal carcinoid tumors from pancreatic endocrine and pulmonary carcinoid tumors. Am J Surg Pathol 2009;33(4):626–32.

55. Couvelard A. Ki67 and neuroendocrine tumors. Ann Pathol 2011;31(5 Suppl):S55–6.

56. Öberg K., Jelic S. Neuroendocrine gastroenteropancreatic tumors: ESMO clinical recommendation for diagnosis, treatment and follow-up. Ann Oncol 2009;20(Suppl 4):150–3.

57. Palazzo M., Lombard-Bohas C., Cadiot G. et al. Ki67 proliferation index, hepatic tumor load, and pretreatment tumor growth predict the antitumoral efficacy of lanreotide in patients with malignant digestive neuroendocrine tumors. Eur J Gastroenterol Hepatol 2013;25(2):232–8.

58. Tang L.H., Gonen M., Hedvat C. et al. Objective quantification of the Ki67 proliferative index in neuroendocrine tumors of the gastroenteropancreatic system: a comparison of digital image analysis with manual methods. Am J Surg Pathol 2012;36(12):1761–70.

59. Yang Z., Tang L.H., Klimstra D.S. Effect of tumor heterogeneity on the assessment of Ki67 labeling index in welldifferentiated neuroendocrine tumors metastatic to the liver: implications for prognostic stratification. Am J Surg Pathol 2011;35(6):853–60.

60. Rindi G., Bordi C. Endocrine tumours of the gastrointestinal tract: etiology, molecular pathogenesis and genetics. Best Pract Res Clin Gastroenterol 2005;19(4):519–34.

61. Cives M., Strosberg J. An update on gastroenteropancreatic neuroendocrine tumors. Oncology (Williston Park) 2014;28(9). pii: 201359.

62. Modlin I.M., Pavel M., Kidd M., Gustafsson B.I. Review article: somatostatin analogues in the treatment of gastroenteropancreatic neuroendocrine (carcinoid) tumours. Aliment Pharmacol Ther 2010;31(2):169–88.

63. Raymond E., Faivre S. Learning experiences with sunitinib continuous daily dosing in patients with pancreatic neuroendocrine tumours. Curr Oncol 2014;21(6):309–17.

64. Abdel-Rahman O. Vascular endothelial growth factor (VEGF) pathway and neuroendocrine neoplasms (NENs): prognostic and therapeutic considerations. Tumour Biol 2014;35(11):10615–25.

65. Scoazec J.Y. Angiogenesis in neuroendocrine tumors: therapeutic applications. Neuroendocrinology 2013;97(1):45–56.

66. Leung R., Lang B., Wong H. et al. Advances in the systemic treatment of neuroendocrine tumors in the era of molecular therapy. Anticancer Agents Med Chem 2013;13(3):382–8.

67. Oberg K.E., Reubi J.C., Kwekkeboom D. J., Krenning E.P. Role of somatostatins in gastroentropancreatic neuroendocrine tumor development and therapy. Gastroenterology 2010;139(3): 742–53.

68. Grozinsky-Glasberg S., Shimon I., Korbonits M., Grossman A.B. Somatostatin analogues in the control of neuroendocrine tumours: efficacy and mechanisms. Endocr Relat Cancer 2008;15(3):701–20.

69. Sidéris L., Dubé P., Rinke A. Antitumor effects of somatostatin analogs in neuroendocrine tumors. Oncologist 2012;17(6):747–55.

70. Strosberg J., Kvols L. Antiproliferative effect of somatostatin analogs in gastroenteropancreatic neuroendocrine tumors. World Gastroenterol 2010;16(24):2963–70.

71. Schmida H.A., Lambertinib C., van Vugta H.H. et al. Monoclonal antibodies against the human somatostatin receptor subtypes 1–5: development and immunohistochemical application in neuroendocrine tumors. Neuroendocrinology 2012;95(3):232–47.

72. Volante M., Brizzi M.P., Faggiano A. et al. Somatostatin receptor type 2a immunohistochemistry in neuroendocrine tumors: a proposal of scoring system correlated with somatostatin receptor scintigraphy. Mod Pathol 2007;20(11):1172–82.

73. Körner M., Waser B., Schonbrunn A. et al. Somatostatin receptor subtype 2a immunohistochemistry using a new monoclonal antibody selects tumors suitable for in vivo somatostatin receptor targeting. Am J Surg Pathol 2012;36(2):242–52.

74. Showkat M., Beigh M.A., Andrabi K.I. mTOR signaling in protein translation regulation: implications in cancer genesis and therapeutic interventions. Mol Biol Int 2014;2014:686984.

75. Cingarlini S., Bonomi M., Corbo V. Profiling mTOR pathway in neuroendocrine tumors. Target Oncol 2012;7(3):183–8.

76. Wolin E.M. PI3K/Akt/mTOR pathway inhibitors in the therapy of pancreatic neuroendocrine tumors. Cancer Lett 2013;335(1):1–8.

77. Zhou C.F., Ji J., Yuan F. et al. mTOR activation in well differentiated pancreatic neuroendocrine tumors: a retrospective study on 34 cases. Hepatogastroenterology 2011;58(112):2140–3.

78. Catena L., Bajetta E., Milione M. et al. Mammalian target of rapamycin expression in poorly differentiated endocrine carcinoma: clinical and therapeutic future challenges. Target Oncol 2011;6(2):65–8.

79. Geis C., Fendrich V., Rexin P. et al. Ileal neuroendocrine tumors show elevated activation of mammalian target of rapamycin complex. J Surg Res 2014. pii: S0022–4804(14)00982–2.

80. Yao J.C., Shah M.H., Ito T. et al. Everolimus for advanced pancreatic neuroendocrine tumors. N Engl J Med 2011;364(6):514–23.

81. Boussaha T., Rougier P., Taieb J., Lepere C. Digestive neuroendocrine tumors (DNET): the era of targeted therapies. Clin Res Hepatol Gastroenterol 2013; 37(2):134–41.

82. Qian Z.R., Ter-Minassian M., Chan J.A. et al. Prognostic significance of MTOR pathway component expression in neuroendocrine tumors. J Clin Oncol 2013;31(27):3418–25.


Review

For citations:


Delektorskaya V.V. Neuroendocrine tumors of the digestive system: pathologic and molecular characteristics. Advances in Molecular Oncology. 2015;2(1):052-060. (In Russ.) https://doi.org/10.17650/2313-805X.2015.2.1.052-060

Views: 3984


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2313-805X (Print)
ISSN 2413-3787 (Online)