Transplantational and specific antitumor immunity in retrospective view: new models based on transgenesis of individual chains of T-cell receptor
https://doi.org/10.17650/2313-805X.2016.3.1.14-27
Abstract
About the Authors
D. B. KazanskiyRussian Federation
24 Kashirskoe shosse, Moscow, 115478
Yu. Yu. Silaeva
Russian Federation
24 Kashirskoe shosse, Moscow, 115478
A. A. Kalinina
Russian Federation
24 Kashirskoe shosse, Moscow, 115478
M. A. Zamkova
Russian Federation
24 Kashirskoe shosse, Moscow, 115478
L. M. Khromykh
Russian Federation
24 Kashirskoe shosse, Moscow, 115478
N. A. Persiyantseva
Russian Federation
24 Kashirskoe shosse, Moscow, 115478
L. Kh. Dzholokhava
Russian Federation
24 Kashirskoe shosse, Moscow, 115478
References
1. Klein J. Natural history of the major histocompatibility complex. A WileyInterscience Publication. New York: John Wiley & Sons, 1986.
2. Jensen C.O. Experimentelle untersuchungen ber krebs bei mausen. Zentralbl Bakteriol Parasitol Infect 1903;34:28–34.
3. Loeb L. Tumor growth and tissue growth. Proc Amer Phil Soc 1908;47:1–12.
4. Tyzzer E.E. The study of inheritance in mice with reference to their susceptibility to transplanted tumors. J Med Res 1909;21:519–73.
5. Little C.C., Johnson B.W. The inheritance of susceptibility to implants of splenic tissue in mice. I. Japanese waltzing mice, albinos, and their F1 generation hybrids. Proc Soc Exp Biol Med 1922;19:163–7.
6. Gorer P.A. The genetic and antigenic basis of tumor transplantation. J Pathol Bacteriol 1937;44:691–7.
7. Gorer P.A., Mikulska Z.B. The antibody response to tumor inoculation. Improved methods of antibody detection. Cancer Res 1954;14:651–5.
8. Snell G.D. Methods for the study of histocompatibility antigens. J Genet 1948;49:87–108.
9. Snell G.D., Dosse J., Nathenson S. Histocompatibility. Academic Press. New York, 1976.
10. Klein J. List of congenic lines of mice. I. Lines with differences at alloantigen loci. Transplantation 1973;15:137–53.
11. Reif A.E., Allen J.M. The AKR thymic antigen and its distribution in leukemias and nervous tissues. J Exp Med 1964;120:413–33.
12. Cantor H., Boyse E.A. Functional subclasses of T-lymphocytes bearing different Ly antigens. J Exp Med 1975;141:1376–89.
13. Murphy K.P. Janeway’s immunobiology. New York: Garland Science, 2012.
14. Brondz B.D. Interaction of immune lymphocytes with normal and neoplastic tissue cells. Folia Biol 1964;10:164–76.
15. Brondz B.D. Complex specificity of immune lymphocytes in allogeneic cell cultures. Folia Biol 1968;14:115–31.
16. Peck A.B., Wigzell H., Janeway C. Jr, Andersson L.C. Environmental and genetic control of T-cell activation in vitro: a study using isolated alloantigen-activated T-cell clones. Immunol Rev 1977;35:146–80.
17. Brondz B.D., Egorova S.G., Kotomina I.F. Enrichment of effector T lymphocytes specific to H-2 antigens by elution from allogeneic target cells and characterization of the eluted lymphocyte population. Eur J Immunol 1975;5(11):773–41.
18. Melief C.J., de Waal L.P., van der Meulen M.Y. et al. Fine specificity of alloimmune cytotoxic T lymphocytes directed against H-2K. A study with Kb mutants. J Exp Med 1980;151(5):993–1013.
19. БрондзБ.Д., ПименовА.А., Бландова З.К., Ворнакова Г.Н. Изучение природы перекрестной реактивности рецепторов цитотоксических Т-лимфоцитов, иммунных к антигенам комплекса H-2 с помощью их фракционирования на монослоях клеток-мишеней. Молекулярная биология 1982;(16):481–92. [BrondzB.D., PimenovА.А., Blandovа Z.K., Vornakovа G.N. Studies of the nature of the cross-reactivity of receptors of cytotoxic Т-lymphocytes, immune to antigens of H-2 сomplex by means of its fractioning at monolayers of target cells. Molekulyarnaya biologiya = Моlecular biology 1982;(16):481–92. (In Russ.)].
20. Брондз Б.Д. Т-лимфоциты и их рецепторы в иммунологическом распознавании. М.: Наука, 1987. С. 353. [Brondz B.D. Т-lymphocytes and itsreceptors in the recognition. Мoscow: Nauka, 1987. P. 353 (In Russ.)].
21. Gross L. Intradermal immunization of C3H mice against a sarcoma that originated in an animal of the same line. Cancer Res 1943;3:326–33.
22. Prehn R.T., Main J.M. Immunity to methylcholantrene-induced sarcomas. J Natl Cancer Inst 1957;18:769–78.
23. Klein G., Sogren H.O., Klein E., Hellstrom K.E. Demonstration of resistance against methylcholantrene-induced sarcomas in the primary autochtonous host. Cancer Res 1960;20:1561–72.
24. Kripke M.L. Antigenicity of murine skin tumors induced by ultraviolet light. J Natl Cancer Inst 1974;53:1333–6.
25. Vaage J. Nonvirus-associated antigens in virus-induced mammary tumors. Cancer Res 1968;28:2477–83.
26. Thorn R.M. Specific inhibition of cytotoxic memory cells produced against UV-induced tumors in UV-irradiated mice. J Immunol 1978;121(5):1920–6.
27. Denfeld R.W., Tesmann J.P., Dittmar H. et al. Further characterization of UVB radiation effects on Langerhans cells: altered expression of the costimulatory molecules B7–1 and B7–2. Photochem Photobiol 1998;67(5):554–60.
28. Roberts L.K., Daynes R.A. Modification of immunogenic properties of chemically induced tumors arising in hosts treated concomitantly with ultraviolet light. J Immunol 1980;125(1):438–47.
29. Verel I., Heider K.H., Siegmund M. et al. Tumor targeting properties of monoclonal antibodies with different affinity for target antigen CD44V6 in nude mice bearing headand-neck cancer xenografts. Int J Cancer 2002;99(3):396–402.
30. Legrand N., Freitas A.A. CD8+ T lymphocytes in double alpha beta TCR transgenic mice. I. TCR expression and thymus selection in the absence or in the presence of self-antigen. J Immunol 2001;167(11):6150–7.
31. Ma X., Robin C., Ottersbach K., Dzierzak E. The Ly-6A(Sca-1) GFP Transgene is expressed in all adult mouse hematopoietic stem cells. Stem Cells 2002;20(6):514–21.
32. Johnsen A.K., France J., Nagy N. et al. Systemic deficits in transporter for antigen presentation (TAP) – 1 or proteasome subunit LMP2 have little or no effect on tumor incidence. Int J Cancer 2001;91(3):366–72.
33. Matechak E.O., Killeen N., Hedrick S.M., Fowlkes B.J. MHC class-II-specific T-cells can develop in the CD8 lineage when CD4 is absent. Immunity 1996;4(4):337–47.
34. Quinonez R., Sutton R.E. Lentiviral vectors for gene delivery into cells. DNA CellBiol 2002;21(12):937–51.
35. Sumimoto H., Tsuji T., Miyoshi H. et al.Rapid and efficient generation of lentivirally gene-modified dendritic cells from DC progenitors with bone marrow stromal cells. J Immunol Methods 2002;271(1–2):153–65.
36. Dunn G.P., Bruce A.T., Ikeda H. et al. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 2002;3(11):991–8.
37. Dunn G.P., Old L.J., Schreiber R.D. The three Es of cancer immunoediting. Ann Rev Immunol 2004;22:329–60.
38. Lin R.L., Zhao L.J. Mechanistic basis and clinical relevance of the role of transforming growth factor-β in cancer. Cancer Biol Med 2015;12(4):385–93.
39. Munn D.H., Mellor A.L. IDO in the tumor microenvironment: inflammation, counter-regulation, and tolerance. Trends Immunol 2016;37(3):193–207.
40. Silaeva Y.Y., Grinenko T.S., Vagida M.S. et al. Immune selection of tumor cells in TCR β-chain transgenic mice. J Immunotoxicol 2014;11(4):393–9.
41. Zvezdova E.S., Grinenko T.S., Pobezinskaya E.L. et al. Coreceptor function of CD4 in response to the MHC class I Molecule. Mol Biol(Mosk) 2008;42(4):662–72.
42. Kazansky D.B. MHC-restriction and allogeneic immune responses. J Immunotoxicol 2008;5(4):369–84.
43. Janeway C.A. Jr, Bottomly K. Signals and signs for lymphocyte responses. Cell 1994;76(2):275–85.
44. Grakoui A., Bromley S.K., Sumen C. et al. The immunological synapse: a molecular machine controlling T-cell activation. Science 1999;285(5425):221–7.
45. Holdorf A.D., Lee K.H., Burack W.R. et al. Regulation of Lck activity by CD4 and CD28 in the immunological synapse. Nat Immunol 2002;3(3):259–64.
46. Goldstein J.S., Chen T., Gubina E. et al. ICAM-1 enhances MHC-peptide activation of CD8+ T-cells without an organized immunological synapse. Eur J Immunol 2000;30(11):3266–70.
47. O’Keefe J.P., Blaine K., Alegre M.L., Gajewski T.F. Formation of a central supramolecular activation cluster is not required for activation of naive CD8+ T-cells. Proc Natl Acad Sci USA 2004;101(25): 9351–6.
48. Ding L., Shevach E.M. Activation of CD4+ T-cells by delivery of the B7 costimulatory signal on bystander antigenpresenting cells (trans-costimulation). Eur J Immunol 1994;24(4):859–66.
49. Smythe J.A., Fink P.D., Logan G.J. et al. Human fibroblasts transduced with CD80 or CD86 efficiently trans-costimulate CD4+ and CD8+ T lymphocytes in HLA-restricted reactions: implications for immune augmentation cancer therapy and autoimmunity. J Immunol 1999;163(6):3239–49.
50. Kundig T.M., Bachmann M.F., DiPaolo C. et al. Fibroblasts as efficient antigenpresenting cells in lymphoid organs. Science 1995;268(5215):1343–7.
51. Ochsenbein A.F., Sierro S., Odermatt B. et al. Roles of tumour localization, second signals and cross priming in cytotoxic T-cell induction. Nature 2001;411(6841): 1058–64.
52. Побезинский Л.А., Побезинская Е.Л., Звездова Е.С. и др. Накопление нейтрофилов в селезенке мышей, иммунизированных клетками аллогенных опухолей. Доклады академии наук 2005;402(3):421–6. [Pobezinskiy L.А., Pobezinskaya Е.L., Zvezdovа Е.S. et al. Neutrophils’ accumulation in the spleen of mice, immunized with allogenic tumors’ cells. Doklady akademii nauk = Reports of the Academy of Sciences 2005;402(3):421–6. (In Russ.)].
53. Марюхнич Е.В., Звездова Е.С., Анфалова Т.В. и др. Функциональная роль нейтрофилоподобных клеток селезенки в иммунном ответе на клетки аллогенных опухолей. Доклады академии наук 2007;414(1):126–9. [Маryukhnich Е.V., Zvezdovа Е.S., Аnfalovа Т.V. et al. Functional role of neutrophil-like cells of the spleen in the immune response to cells of allogenic tumors. Doklady akademii nauk = Reports of the Academy of Sciences 2007;414(1):126–9. (In Russ.)].
54. Iking-Konert C., Cseko C., Wagner C. et al. Transdifferentiation of polymorphonuclear neutrophils: acquisition of CD83 and other functional characteristics of dendritic cells. J Mol Med 2001;79(8):464–74.
55. Tanaka E., Sendo F. Abrogation of tumorinhibitory MRC-OX8+(CD8+) effector T-cell generation in rats by selective depletion of neutrophils in vivo using a monoclonal antibody. Int J Cancer 1993;54(1):131–6.
56. Buonocore S., Surquin M., Le Moine A., et al. Amplification of T-cell responses by neutrophils: relevance to allograft immunity. Immunol Lett 2004;94(3):163–6.
57. Wakim L.M., Bevan M.J. Cross-dressed dendritic cells drive memory CD8+ T-cell activation after viral infection. Nature 2011;471(7340):629–32.
58. Li L., Kim S., Herndon J.M. et al. Crossdressed CD8alpha+/CD103+ dendritic cells prime CD8+ T-cells following vaccination. Proc Natl Acad Sci. USA 2012;109(31):12716–21.
59. Zerrahn J., Held W., Raulet D.H. The MHC reactivity of the T-cell repertoire prior to positive and negative selection. Cell 1997;88(5):627–36.
60. Brondz B.D., Kazansky D.B., Chernysheva A.D., Ivanov V.S. Peptides of a major histocompatibility complex class I (Kb) molecule cause prolongation of skin graft survival and induce specific downregulatory T-cells demonstrable in the mixed lymphocyte reaction. Immunology 1995;86(2):219–23.
61. Sun R., Shepherd S.E., Geier S.S. et al. Evidence that the antigen receptors of cytotoxic T lymphocytes interact with a common recognition pattern on the H-2Kb molecule. Immunity 1995;3(5):573–82.
62. Anfalova T.V., Galaktionov V.G., Brondz B.D. The functional transformation of cytotoxic lymphocytes into T-suppressors under the influence of two mediators. Immunol Lett 1997;59(2):121–6.
63. Constantine K.L., Mapelli C., Meyers C.A. et al. Micelle-bound conformational preferences of a peptide derived from a murine major histocompatibility complex class I molecule. J Biol Chem 1993;268(30):22830–7.
64. Nathenson S.G., Geliebter J., Pfaffenbach G.M., Zeff R.A. Murine major histocompatibility complex class-I mutants: molecular analysis and structure-function implications. Annu Rev Immunol 1986;4:471–502.
65. Kazanskii D.B., Chernysheva A.D., Sernova N.V. et al. The nature of epitopes, recognized by T-lymphocytes in the allogenic immune response. Mol Biol (Mosk) 1998;32(4):692–702.
66. Davis M.M., Boniface J.J., Reich Z. et al. Ligand recognition by beta T-cell receptors. Annu Rev Immunol 1998;16: 523–44.
67. Van Kaer L., Ashton-Rickardt P.G., Pleogh H.L., Tonegawa S. TAP1 mutant mice are deficient in antigen presentation, surface class I molecules, and CD8+ T-cells. Cell 1993;71(7):1205–14.
68. Kuhns S.T., Tallquist M.D., Johnson A.J. et al. T-cell receptor interaction with class I heavy-chain influence T-cell selection. Proc Natl Acad Sci U S A 1999;97(2):756–60.
69. Willcox B.E., Gao G.F., Wyer J.R. et al. TCR binding to peptide-MHC stabilizes a flexible recognition interface. Immunity 1999;10(3):357–65.
70. Казанский Д.Б., Силаева Ю.Ю., Анфалова Т.В. и др. Использование мультиплетных пептидов для стимуляции специфического клеточного иммунитета. Аллергия, астма и клиническая иммунология 2001;(1):48–51. [Kazanskiy D.B., Silaevа Yu.Yu., Аnfalovа Т.V. et al. Use of multiplet peptides for the stimulation of the specific cell immunity. Allergiya, astma i klinicheskaya immunologiya = Аllergy, Asthma and Clinical Immunology 2001;(1):48–51. (In Russ.)].
71. Казанский Д.Б., Побезинский Л.А., Терещенко Т.С. Мотивы в первичной структуре молекул MHC класса I и их использование для создания синтетических лигандов Т-клеточных рецепторов. Вестник РАМН 2004;(12):25–32. [Kazanskiy D.B., Pobezinskiy L.А., Теreshchenkо Т.S. Моtives in the initial structure of MHC class I molecules and its use for the creation of synthetic ligands of Т-cell receptors. Vestnik RAMN = RAMS Herald 2004;(12):25–32. (In Russ.)].
72. Побезинский Л.А., Побезинская Е.Л., Терещенко Т.С. и др. Периферический пул Т-клеток CD8+ содержит лимфоциты с антигенспецифическими рецепторами, распознающими сингенные молекулы MHC класса II. Онтогенез 2004;35(3): 183–9. [Pobezinskiy L.А., Pobezinskaya Е.L., Теreshchenkо Т.S. et al. The peripheral pool of CD8+ T- cells contains lymphocytes with antigen specific receptors, recognizing syngeneic molecules of MHC class II. Ontogenez = Оntogenesis 2004;35(3):183–9. (In Russ.)].
73. Казанский Д.Б. Внутритимусная селекция и иммунотерапия рака. Русский журнал СПИД, рак и общественное здоровье 2007;11(1):25–32. [Kazanskiy D.B. Intrathymic selection and immune therapy of cancer. Russkiy zhurnal SPID, rak i obshchestvennoe zdorov’e = Russian Journal for AIDS, Cancer and Public Health 2007;11(1):25–32. (In Russ.)].
74. Kazansky D.B. Intrathymic selection: new insight into tumor immunology. Adv Exp Med Biol 2007;601:133–44.
75. Derbinski J., Schulte A., Kyewski B., Klein L. Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self. Nature Immunol 2001;2(11):1032–9.
76. Anderson M.S., Venanzi E.S., Klein L. et al. Protection of an immunological self shadow within the thymus by the aire protein. Science 2002;289(5597):1395–401.
77. Liston A., Lesage S., Wilson J. et al. Aire regulates negative selection of organ-specific T-cells. Nat Immunol 2003;4(4):350–4.
78. Gao L., Bellantuono I., Elsasser A. et al. Selective elimination of leukemic CD34(+) progenitor cells by cytotoxic T lymphocytes specific for WT1. Blood 2000;95(7):2198–203.
79. Rosenberg S.A., Restifo N.P. Adoptive cell transfer as personalized immunotherapy for human cancer. Science 2015;348(6230):62–8.
80. Klebanoff C.A., Rosenberg S.A., Restifo N.P. Prospects for gene-engineered T-cell immunotherapy for solid cancers. Nat Med 2016;22(1):26–36.
81. Казанский Д.Б., Петрищев В.Н., Штиль А.А. и др. Использование теплового шока антигенпрезентирующих клеток для функционального тестирования аллоспецифических Т-клеток памяти. Биоорганическая химия 1999;(25):117–28. [Kazanskiy D.B., Petrishchev V.N., Shtil’ А.А. et al. Use of the thermal shock of antigen presenting cells for the functional testing of allospecific memory Т-cells. Bioorganicheskaya khimiya = Bioorganic Chemistry 1999;(25):117–28. (In Russ.)].
82. Гриненко Т.С., Побезинская Е.Л., Побезинский Л.А. и др. Подавление клетками памяти CD8+ первичного аллогенного ответа. Бюллютень экспериментальной биологии и медицины 2005;(140):556–61. [Grinenko Т.S., Pobezinskaya Е.L., Pobezinskiy L.А. et al. Suppression of the initial allogeneic response by CD8+ memory cells. Byullyuten’ eksperimental’noy biologii i meditsiny = Bulletin of the Experimental Biology and Medicine 2005;(140):556–61. (In Russ.)].
83. Побезинская Е.Л., Побезинский Л.А., Силаева Ю.Ю. и др. Кросс-реактивность Т-клеточного рецептора клона клеток памяти CD8+, полученного в ответе на иммунизацию клетками аллогенной опухоли. Бюллютень экспериментальной биологии и медицины 2004;(137):563–8. [Pobezinskaya Е.L., Pobezinskiy L.А., Silaevа Yu.Yu. et al. Cross-reactivity of the Т-cell receptor of the clone of CD8+ memory cells, received in the response of for the immunization by allogeneic tumor cells. Byullyuten’ eksperimental’noy biologii i meditsiny = Bulletin of the Experimental Biology and Medicine 2004;(137):563–8. (In Russ.)].
84. Звездова Е.С., Силаева Ю.Ю., Вагида М.С. и др. Создание трансгенных животных, экспрессирующих α- и β-цепи аутореактивного TCR. Молекулярная биология 2010;(44):311–22. [Zvezdovа Е.S., Silaevа Yu.Yu., Vagidа М.S. et al. Сreation of transgenic animals, expressing α- and β-chains of the autoreactive TCR. Molekulyarnaya biologiya = Моlecular Biology 2010;(44):311–22. (In Russ.)].
85. Силаева Ю.Ю., Калинина А.А., Вагида М.С. и др. Сокращение пула Т-лимфоцитов с поверхностным фенотипом эффекторов и клеток памяти под воздействием экспрессии трансгена β-цепи Т-клеточного рецептора. Биохимия 2013;78(5):714–26. [Silaevа Yu.Yu., Kalininа А.А., Vagidа М.S. et al. Reduction of the pool of Т-lymphocytes with the surface phenotype of effectors and memory cells, influenced by the expression of transgene of the β-chain of the Т-cell receptor. Biokhimiya = Biochemistry 2013;78(5):714–26. (In Russ.)].
86. Silaeva Y.Y., Grinenko T.S., Vagida M.S. et al. Immune selection of tumor cells in TCR β-chain transgenic mice. J Immunotoxicol 2014;11(4):393–9.
87. Казанский Д.Б. Трансгенные технологии создания иммунологической защиты организма. Cборник докладов семинара Фонда перспективных исследований «Проблемные вопросы иммунологии» 03 октября 2014 г., М.: Б-принт, 2015. С. 17–25. [Kazanskiy D.B. Тransgene technologies of the creation of the immunologic protection of the organism. Volume of reports of the workshop of the Prospective Research Foundation “Problematic Immunology Issues” October 03 2014, Мoscow: B-print, 2015. Pp. 17–25. (In Russ.)].
88. Mackay L.K., Rahimpour A., Ma J.Z. et al. The developmental pathway for CD103(+) CD8+ tissue-resident memory T-cells of skin. Nat Immunol 2013;14(12):1294–301.
Review
For citations:
Kazanskiy D.B., Silaeva Yu.Yu., Kalinina A.A., Zamkova M.A., Khromykh L.M., Persiyantseva N.A., Dzholokhava L.Kh. Transplantational and specific antitumor immunity in retrospective view: new models based on transgenesis of individual chains of T-cell receptor. Advances in Molecular Oncology. 2016;3(1):14-27. (In Russ.) https://doi.org/10.17650/2313-805X.2016.3.1.14-27