Study of the suppression of a tumor growth expressing a carcinoembryonic antigen with a new high-tech drug carplasmin (CAR-T therapy) in Balb/c nude mice
- Authors: Bozhenko V.K.1, Shishkin A.M.1, Shkoporov A.N.2, Kiseleva Y.Y.1, Kulinich T.M.1, Bolshakova O.B.1, Kudinova E.A.1, Solodkiy V.A.1
-
Affiliations:
- Russian Scientific Center of Roentgenoradiology, Ministry of Health of Russia
- APC Microbiome Ireland, School of Microbiology & Department of Medicine, University College
- Issue: Vol 10, No 1 (2023)
- Pages: 79-86
- Section: RESEARCH ARTICLES
- Published: 31.03.2023
- URL: https://umo.abvpress.ru/jour/article/view/514
- DOI: https://doi.org/10.17650/2313-805X-2023-10-1-79-86
- ID: 514
Cite item
Full Text
Abstract
Introduction. Adoptive immunotherapy based on chimeric antigen receptors (CAR) is considered as a promising direction in the treatment of solid malignant tumors. To produce genetically modified human T-lymphocytes, lenti/retroviral transduction is currently most often used. However, safety concerns associated with the viral vector production and possible unwanted genome modification limit the clinical utility of CAR-T cells. Therefore, non-viral transfection methods, in particular electroporation, using of DNA or RNA vectors, are being actively studied as a method for producing CAR-T lymphocytes.
Aim. To evaluate in vivo antitumor activity of the new high-tech drug carplasmin, intended for CAR-T therapy of tumors expressing carcinoembryonic antigen (CEA). Materials and methods. Carplasmin was obtained by electroporation of activated human lymphocytes with plasmid DNA carrying the third generation CAR gene specific to CEA. The study was performed on a human colorectal cancer xenograft model obtained by intraperitoneal injection of CEA-positive HCT116 cell line to athymic Balb/c nude mice. Carplasmin treatment was carried out once a week, starting from the third day after HCT116 cell inoculation. Mice in the two control groups were treated with either electroporated lymphocytes without plasmid addition (pulse-lymphocytes) or RPMI-1640 culture medium (group without treatment).
Results. In vivo, carplasmin demonstrated a pronounced antitumor effect. Seven weekly injections of the drug to inoculated mice led to a prominent effect of antitumor therapy: 80 % of the animals in the experimental group survived (with 40 % of the mice had a complete remission without signs of a detectable tumor), compared to 100 % death in the control group (without treatment).
Conclusion. The results of preclinical efficacy studies demonstrate that carplasmin is a promising drug for the treatment of CEA-positive intraperitoneal tumors.
About the authors
V. K. Bozhenko
Russian Scientific Center of Roentgenoradiology, Ministry of Health of Russia
Author for correspondence.
Email: fake@neicon.ru
ORCID iD: 0000-0001-8351-8152
86 Profsoyuznaya St., Moscow 117997
Russian FederationA. M. Shishkin
Russian Scientific Center of Roentgenoradiology, Ministry of Health of Russia
Email: fake@neicon.ru
ORCID iD: 0000-0002-8934-2845
86 Profsoyuznaya St., Moscow 117997
Russian FederationA. N. Shkoporov
APC Microbiome Ireland, School of Microbiology & Department of Medicine, University College
Email: fake@neicon.ru
ORCID iD: 0000-0002-5547-8672
College Road, T12 K8AF Cork
IrelandY. Yu. Kiseleva
Russian Scientific Center of Roentgenoradiology, Ministry of Health of Russia
Email: yykiseleva@rncrr.ru
ORCID iD: 0000-0002-8352-4787
Yana Yurevna Kiseleva
86 Profsoyuznaya St., Moscow 117997
Russian FederationT. M. Kulinich
Russian Scientific Center of Roentgenoradiology, Ministry of Health of Russia
Email: fake@neicon.ru
ORCID iD: 0000-0003-2331-5753
86 Profsoyuznaya St., Moscow 117997
Russian FederationO. B. Bolshakova
Russian Scientific Center of Roentgenoradiology, Ministry of Health of Russia
Email: fake@neicon.ru
ORCID iD: 0000-0001-8382-3579
86 Profsoyuznaya St., Moscow 117997
Russian FederationE. A. Kudinova
Russian Scientific Center of Roentgenoradiology, Ministry of Health of Russia
Email: fake@neicon.ru
ORCID iD: 0000-0002-5530-0591
86 Profsoyuznaya St., Moscow 117997
Russian FederationV. A. Solodkiy
Russian Scientific Center of Roentgenoradiology, Ministry of Health of Russia
Email: fake@neicon.ru
ORCID iD: 0000-0002-1641-6452
86 Profsoyuznaya St., Moscow 117997
Russian FederationReferences
- Arabi F., Torabi-Rahvar M., Shariati A. et al. Antigenic targets of CAR T cell therapy. A retrospective view on clinical trials. Exp Cell Res 2018;369(1):1–10. doi: 10.1016/j.yexcr.2018.05.009
- Brentjens R.J., Davila M.L., Riviere I. et al. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapyrefractory acute lymphoblastic leukemia. Sci Transl Med 2013;5(177):177ra38. doi: 10.1126/scitranslmed.3005930
- Kuehn B.M. The promise and challenges of CAR-T gene therapy. JAMA. 2017;318(22):2167–9. doi: 10.1001/jama.2017.15605
- Bjerner J., Lebedin Y., Bellanger L. et al. Protein epitopes in carcinoembryonic antigen. Report of the ISOBM TD8 workshop. Tumour Biol 2002;23(4):249–62. doi: 10.1159/000067255
- Шишкин А.М. Разработка метода адоптивной иммунотерапии раково-эмбриональный антиген позитивных опухолей человека: автореф. дис. … канд. мед. наук. М., 2015. 22 с. Shishkin A.M. Development of the method of adaptive immunotherapy cancer-embryonic antigen of positive human tumors: abstract of the dissertation of the Candidate of Medical Sciences. Moscow, 2015. 22 p. (In Russ.).
- Bojenko V.K., Shramova E.I., Shkoporov A.N. et al. Monomolecular chimeric T-cell receptor to a carcinoembryonic antigen. WO2013154458A2, 2013.
- Bozhenko V.K., Shramova E.I., Shishkin A.M. et al. Characteristics of new monomolecular chimeric T-cell receptors to carcinoembryonic antigen. Bull Exp Biol Med 2013;156(1): 165–71. doi: 10.1007/s10517-013-2302-2
- Skorka K., Ostapinska K., Malesa A. et al. The application of CART cells in haematological malignancies. Arch Immunol Ther Exp (Warsz) 2020;68(6):34. doi: 10.1007/s00005-020-00599-x
- Hammarstrom S. The carcinoembryonic antigen (CEA) family: structures, suggested functions and expression in normal and malignant tissues. Semin Cancer Biol 1999;9(2):67–81. doi: 10.1006/scbi.1998.0119
- Nap M., Mollgard K., Burtin P. et al. Immunohistochemistry of carcino-embryonic antigen in the embryo, fetus and adult. Tumour Biol 1988;9(2–3):145–53. doi: 10.1159/000217555
- Boucher D., Cournoyer D., Stanners C.P. et al. Studies on the control of gene expression of the carcinoembryonic antigen family in human tissue. Cancer Res 1989;49(4):847–52.
- Zhang C., Wang Z., Yang Z. et al. Phase I escalating-dose trial of CAR-T therapy targeting CEA(+) metastatic colorectal cancers. Mol Ther 2017;25(5):1248–58. doi: 10.1016/j.ymthe.2017.03.010
- Yoon S.H., Lee J.M., Cho H.I. et al. Adoptive immunotherapy using human peripheral blood lymphocytes transferred with RNA encoding Her-2/neu-specific chimeric immune receptor in ovarian cancer xenograft model. Cancer Gene Ther 2009;16(6):489–97. doi: 10.1038/cgt.2008.98
- Barrett D.M., Zhao Y., Liu X. et al. Treatment of advanced leukemia in mice with mRNA engineered T cells. Hum Gene Ther 2011;22(12):1575–86. doi: 10.1089/hum.2011.070
- Mitchell D.A., Nair S.K. RNA-transfected dendritic cells in cancer immunotherapy. J Clin Invest 2000;106(9):1065–9. DOI: 10.1172/ JCI11405
- Emtage P.C., Lo A.S., Gomes E.M. et al. Second-generation anticarcinoembryonic antigen designer T cells resist activation-induced cell death, proliferate on tumor contact, secrete cytokines, and exhibit superior antitumor activity in vivo: a preclinical evaluation. Clin Cancer Res 2008;14(24):8112–22. doi: 10.1158/1078-0432. CCR-07-4910
- Wang X., Riviere I. Clinical manufacturing of CAR T cells: foundation of a promising therapy. Mol Ther Oncolytics 2016;3:16015. doi: 10.1038/mto.2016.15
Supplementary files


