Модельные системы in vivo для исследований в онкологии
https://doi.org/10.17650/2313-805X-2023-10-2-8-16
Аннотация
На сегодняшний день онкологические заболевания являются одной из основных причин смертности населения. в понимании клеточных и физиологических процессов канцерогенеза и опухолевой прогрессии остаются существенные пробелы, заполнение которых возможно посредством использования моделей in vivo. в данном обзоре представлено современное состояние экспериментальных систем in vivo, включая сингенные модели, ксенотрансплантаты от клеток опухоли пациентов (patient-derived xenograft, PDX), модели ксенографтов с использованием клеточных культур (cell line derived xenograft, CDX) и различные типы животных – гуманизированные и генно-инженерные (genetically engineered models, GEM). Рассматриваются возможности, которые открывают животные модели: создание аватара пациента, прижизненная визуализация опухолевой миграции и инвазии на организменном уровне и оценка новых терапевтических подходов, нацеленных на первичную опухоль, метастазы и профилактику онкологических заболеваний. Обсуждаются проблемы, с которыми сталкивается исследователь при выборе оптимальной модели, предлагаются возможные пути их решения.
Об авторах
У. А. БоковаРоссия
Бокова Устинья Анатольевна.
634009 Томск, Кооперативный пер., 5
М. С. Третьякова
Россия
634009 Томск, Кооперативный пер., 5
А. А. Щеголева
Россия
634009 Томск, Кооперативный пер., 5
Е. В. Денисов
Россия
634009 Томск, Кооперативный пер., 5
Список литературы
1. Giacobbe A., Abate-Shen C. Modeling metastasis in mice: a closer look. Trends Cancer 2021;7(10):916–29. DOI: 10.1016/j.trecan.2021.06.010
2. Roarty K., Echeverria G.V. Laboratory models for investigating breast cancer therapy resistance and metastasis. Front Oncol 2021;11:645698. DOI: 10.3389/fonc.2021.645698
3. Simmons J.K., Hildreth B.E., Supsavhad W. et al. Animal models of bone metastasis. Vet Pathol 2015;52(5):827–41. DOI: 10.1177/0300985815586223
4. Gómez-Miragaya J., Morán S., Calleja-Cervantes M.E. et al. The altered transcriptome and DNA methylation profiles of docetaxel resistance in breast cancer PDX models. Mol Cancer Res 2019;17(10):2063–76. DOI: 10.1158/1541-7786.mcr-19-0040
5. Lefley D., Howard F., Arshad F. et al. Development of clinically relevant in vivo metastasis models using human bone discs and breast cancer patient-derived xenografts. Breast Cancer Res 2019;21(1):130. DOI: 10.1186/s13058-019-1220-2
6. Kopetz S., Lemos R., Powis G. The promise of patient-derived xenografts: The best laid plans of mice and men. Clin Cancer Res 2012;18(19):5160–2. DOI: 10.1158/1078-0432.ccr-12-2408
7. Souto E.P., Dobrolecki L.E., Villanueva H. et al. In vivo modeling of human breast cancer using cell line and patient-derived xenografts. J Mammary Gland Biol Neoplasia 2022;27(2):211–30. DOI: 10.1007/s10911-022-09520-y
8. Chen J., Liao S., Xiao Z. et al. The development and improvement of immunodeficient mice and humanized immune system mouse models. Front Immunol 2022;13:1007579. DOI: 10.3389/fimmu.2022.1007579
9. Connolly K.A., Fitzgerald B., Damo M. et al. Novel mouse models for cancer immunology. Ann Rev Cancer Biol 2022;6(1):269–91. DOI: 10.1146/annurev-cancerbio-070620-105523
10. Olson B., Li Y., Lin Y. et al. Mouse models for cancer immunotherapy research. Cancer Discov 2018;8(11):1358–65. DOI: 10.1158/2159-8290.cd-18-0044
11. Lei Z.-N., Teng Q.-X., Gupta P. et al. Cabozantinib reverses topotecan resistance in human non-small cell lung cancer NCI-H460/TPT10 cell line and tumor xenograft model. Front Cell Develop Biol 2021;9:640957. DOI: 10.3389/fcell.2021.640957
12. Terracina K.P., Aoyagi T., Huang W.C. et al. Development of a metastatic murine colon cancer model. J Surg Res 2015;199(1):106–14. DOI: 10.1016/j.jss.2015.04.030
13. Hapach L.A., Mosier J.A., Wang W. et al. Engineered models to parse apart the metastatic cascade. NPG Precis Oncol 2019;3(1):20. DOI: 10.1038/s41698-019-0092-3
14. Komen J., van Neerven S.M., van den Berg A. et al. Mimicking and surpassing the xenograft model with cancer-on-chip technology. EBioMedicine 2021;66:103303. DOI: 10.1016/j.ebiom.2021.103303
15. Kaur G., Dufour J.M. Cell lines: valuable tools or useless artifacts. Spermatogenesis 2012;2(1):1–5. DOI: 10.4161/spmg.19885
16. Kamińska K., Szczylik C., Bielecka Z.F. et al. The role of the cell-cell interactions in cancer progression. J Cell Mol Med 2015;19(2):283–96. DOI: 10.1111/jcmm.12408
17. Hutchinson L., Kirk R. High drug attrition rates – where are we going wrong? Nat Rev Clin Oncol 2011;8(4):189–90. DOI: 10.1038/nrclinonc.2011.34
18. Strowitzki M.J., Dold S., von Heesen M. et al. The phosphodiesterase 3 inhibitor cilostazol does not stimulate growth of colorectal liver metastases after major hepatectomy. Clin Exp Metastasis 2014;31(7):795–803. DOI: 10.1007/s10585-014-9669-y
19. Chijiwa T., Kawai K., Noguchi A. et al. Establishment of patient-derived cancer xenografts in immunodeficient NOG mice. Int J Oncol 2015;47(1):61–70. DOI: 10.3892/ijo.2015.2997
20. Тимофеева Н.Ю., Бубнова Н.В., Стручко Г.Ю. и др. Методы экспериментального моделирования метастазирования. Биомедицина 2021;17(4):44–9. DOI: 10.33647/2074-5982-17-4-44-49
21. Santana-Krímskaya S.E., Kawas J.R., Zarate-Triviño D.G. et al. Orthotopic and heterotopic triple negative breast cancer preclinical murine models: a tumor microenvironment comparative. Res Vet Sci 2022;152:364–71. DOI: 10.1016/j.rvsc.2022.08.026
22. Bocuk D., Wolff A., Krause P. et al. The adaptation of colorectal cancer cells when forming metastases in the liver: expression of associated genes and pathways in a mouse model. BMC Cancer 2017;17(1):342. DOI: 10.1186/s12885-017-3342-1
23. Khanna C., Hunter K. Modeling metastasis in vivo. Carcinogenesis 2005;26(3):513–23. DOI: 10.1093/carcin/bgh261
24. Risbridger G.P., Toivanen R., Taylor R.A. Preclinical models of prostate cancer: patient-derived xenografts, organoids, and other explant models. Cold Spring Harb Perspect Med 2018;8(8):a030536. DOI: 10.1101/cshperspect.a030536
25. Liu J., Lian J., Chen Y. et al. Circulating tumor cells (CTCs): a unique model of cancer metastases and non-invasive biomarkers of therapeutic response. Front Genet 2021;12:734595. DOI: 10.3389/fgene.2021.734595
26. Zanella E.R., Grassi E., Trusolino L. Towards precision oncology with patient-derived xenografts. Nat Rev Clin Oncol 2022;19(11):719–32. DOI: 10.1038/s41571-022-00682-6
27. Ye W., Chen Q. Potential applications and perspectives of humanized mouse models. Annu Rev Anim Biosci 2022;10: 395–417. DOI: 10.1146/annurev-animal-020420-033029
28. Wang J., Chen C., Wang L. et al. Patient-derived tumor organoids: new progress and opportunities to facilitate precision cancer immunotherapy. Front Oncol 2022;12:872531. DOI: 10.3389/fonc.2022.872531
29. Gómez-Cuadrado L., Tracey N., Ma R. et al. Mouse models of metastasis: progress and prospects. Dis Model Mech 2017;10(9):1061–74. DOI: 10.1242/dmm.030403
30. Morton J.J., Bird G., Refaeli Y. et al. Humanized mouse xenograft models: narrowing the tumor-microenvironment gaphumanized mouse xenograft models. Cancer Res 2016;76(21):6153–8. DOI: 10.1158/0008-5472.CAN-16-1260
31. Hegde M., Naliyadhara N., Unnikrishnan J. et al. Nanoparticles in the diagnosis and treatment of cancer metastases: current and future perspectives. Cancer Lett 2023;556:216066. DOI: 10.1016/j.canlet.2023.216066
32. Hu R., Li Y., Guo Y. et al. BRD4 inhibitor suppresses melanoma metastasis via the SPINK6/EGFR-EphA2 pathway. Pharmacol Res 2023;187:106609. DOI: 10.1016/j.phrs.2022.106609
33. Liu M., Xie L., Zhang Y. et al. Inhibition of CEMIP potentiates the effect of sorafenib on metastatic hepatocellular carcinoma by reducing the stiffness of lung metastases. Cell Death Dis 2023;14(1):25. DOI: 10.1038/s41419-023-05550-4
34. Mallya K., Gautam S.K., Aithal A. et al. Modeling pancreatic cancer in mice for experimental therapeutics. Biochim Biophys Asta Rev Cancer 2021;1876(1):188554. DOI: 10.1016/j.bbcan.2021.188554
35. Xu H., Zheng H., Zhang Q. et al. A multicentre clinical study of sarcoma personalised treatment using patient-derived tumour xenografts. Clin Oncol 2023;35(1):e48–59. DOI: 10.1016/j.clon.2022.06.002
36. Entenberg D., Oktay M.H., Condeelis J.S. Intravital imaging to study cancer progression and metastasis. Nat Rev Cancer 2023;23(1):25–42. DOI: 10.1038/s41568-022-00527-5
37. Haddad A.F., Young J.S., Amara D. et al. Mouse models of glioblastoma for the evaluation of novel therapeutic strategies. Neuro-Oncol Adv 2021;3(1):vdab100. DOI: 10.1093/noajnl/vdab100
38. Bahcecioglu G., Basara G., Ellis B.W. et al. Breast cancer models: Engineering the tumor microenvironment. Acta Biomaterialia 2020;106:1–21. DOI: 10.1016/j.actbio.2020.02.006
39. Abdolahi S., Ghazvinian Z., Muhammadnejad S. et al. Patient-derived xenograft (PDX) models, applications and challenges in cancer research. J Transl Med 2022;20(1):206. DOI: 10.1186/s12967-022-03405-8
40. Sobarzo A., Roisman L., Pikovsky O. et al. A36 patient-specific humanized PDX model for overcoming tumor resistance to immune checkpoint inhibitors in NSCLC patients. J Thoracic Oncol 2020;15(2):S24. DOI: 10.1016/j.jtho.2019.12.065
41. Helleday T. Using personalized immune-humanized xenograft mouse models to predict immune checkpoint responses in malignant melanoma: potential and hurdles. Ann Oncol 2020;31(2):167–8. DOI: 10.1016/j.annonc.2019.11.007
42. Xu T., Karschnia P., Cadilha B.L. et al. In vivo dynamics and antitumor effects of EpCAM-directed CAR T-cells against brain metastases from lung cancer. Oncoimmunology 2023;12(1):2163781. DOI: 10.1080/2162402x.2022.2163781
43. Nardella C., Lunardi A., Patnaik A. et al. The APL paradigm and the “co-clinical trial” project. Cancer Discov 2011;1(2):108–16. DOI: 10.1158/2159-8290.cd-11-0061
44. Wang J., Huang J., Wang H. et al. Personalized treatment of advanced gastric cancer guided by the MiniPDX model. J Oncol 2022;2022:1987705. DOI: 10.1155/2022/1987705
45. Zhan M., Yang R.-M., Wang H. et al. Guided chemotherapy based on patient-derived mini-xenograft models improves survival of gallbladder carcinoma patients. Cancer Commun 2018;38(1):48. DOI: 10.1186/s40880-018-0318-8
46. Zhang F., Wang W., Long Y. et al. Characterization of drug responses of mini patient-derived xenografts in mice for predicting cancer patient clinical therapeutic response. Cancer Commun 2018;38(1):60. DOI: 10.1186/s40880-018-0329-5
47. Ali Z., Vildevall M., Rodriguez G.V. et al. Zebrafish patient-derived xenograft models predict lymph node involvement and treatment outcome in non-small cell lung cancer. J Exp Clin Cancer Res 2022;41(1):58. DOI: 10.1186/s13046-022-02280-x
48. Ny L., Rizzo L.Y., Belgrano V. et al. Supporting clinical decision making in advanced melanoma by preclinical testing in personalized immune-humanized xenograft mouse models. Ann Oncol 2020;31(2):266–73. DOI: 10.1016/j.annonc.2019.11.002
49. Кит О., Максимов А., Протасова Т. и др. Гуманизированные мыши: методы получения, модели и использование в экспериментальной онкологии (обзор). Биомедицина 2019;15(4): 67–81. DOI: 10.33647/2074-5982-15-4-67-81
50. Watabe T., Kaneda-Nakashima K., Liu Y. et al. Enhancement of 211At uptake via the sodium iodide symporter by the addition of ascorbic acid in targeted α-therapy of thyroid cancer. J Nucl Med 2019;60(9):1301–7. DOI: 10.2967/jnumed.118.222638
51. Yonekura Y., Toki H., Watabe T. et al. Mathematical model for evaluation of tumor response in targeted radionuclide therapy with 211at using implanted mouse tumor. Int J Mol Sci 2022;23(24):15966. DOI: 10.3390/ijms232415966
52. Zeng Z., Wong C.J., Yang L. et al. TISMO: syngeneic mouse tumor database to model tumor immunity and immunotherapy response. Nucl Acids Res 2022;50(D1):D1391–7. DOI: 10.1093/nar/gkab804
53. Keinan N., Scharff Y.E., Goldstein O. et al. Syngeneic leukemia models using lentiviral transgenics. Cell Death Dis 2021;12(2):193. DOI: 10.1038/s41419-021-03477-2
54. Mendonça-Gomes J.M., Valverde T.M., Martins T.M.D.M. et al. Long-term dexamethasone treatment increases the engraftment efficiency of human breast cancer cells in adult zebrafish. Fish Shellfish Immunol Rep 2021;2:100007. DOI: 10.1016/j.fsirep.2021.100007
55. Wang Z., Wu V.H., Allevato M.M. et al. Syngeneic animal models of tobacco-associated oral cancer reveal the activity of in situ anti-CTLA-4. Nat Commun 2019;10(1):5546. DOI: 10.1038/s41467-019-13471-0
56. Нехаева Т., Чернов А., Торопова Я. и др. Разнообразие опухолевых моделей для тестирования противоопухолевой активности веществ у мышей. Вопросы онкологии 2020;66(4):353–63. DOI: 10.37469/0507-3758-2020-66-4-353-363
57. Tian H., Lyu Y., Yang Y.G. et al. Humanized rodent models for cancer research. Front Oncol 2020;10:1696. DOI: 10.3389/fonc.2020.01696.
Рецензия
Для цитирования:
Бокова У.А., Третьякова М.С., Щеголева А.А., Денисов Е.В. Модельные системы in vivo для исследований в онкологии. Успехи молекулярной онкологии. 2023;10(2):8-16. https://doi.org/10.17650/2313-805X-2023-10-2-8-16
For citation:
Bokova U.A., Tretyakova M.S., Schegoleva A.A., Denisov E.V. In vivo models in cancer research. Advances in Molecular Oncology. 2023;10(2):8-16. (In Russ.) https://doi.org/10.17650/2313-805X-2023-10-2-8-16