Иммунотерапия гастроинтестинальных стромальных опухолей: состояние вопроса и перспективы
https://doi.org/10.17650/2313-805X-2023-10-2-17-29
Аннотация
Гастроинтестинальные стромальные опухоли (ГИСО) происходят от веретеновидных интерстициальных клеток кахаля и характеризуются наличием мутаций в генах KIT и PDGFRA, кодирующих одноименные тирозинкиназные рецепторы. Основным принципом лекарственной терапии пациентов с данными новообразованиями (в том числе неоперабельных, рецидивирующих и метастатических форм) является назначение им таргетных препаратов, ингибирующих активность вышеуказанных рецепторных тирозинкиназ. Несмотря на высокую эффективность этих лекарственных средств, в первую очередь иматиниба мезилата (гливека), в лечении ГИСО, у подавляющего большинства пациентов спустя 1,5–2 года после начала таргетной терапии развивается резистентность опухоли к данным препаратам, что диктует необходимость пересмотра тактики лечения и последующего назначения препаратов терапии 2, 3 и 4-й линий. в обзоре рассматриваются основные молекулярно-генетические варианты ГИСО, современные принципы их лечения, а также механизмы первичной и вторичной резистентности данных новообразований к таргетным препаратам. Также описываются механизмы взаимодействия клеток иммунной системы с ГИСО, взаимосвязь мутационного и иммунного профилей опухолей, перспективные подходы к иммунотерапии этих новообразований и приводятся данные о текущих клинических испытаниях, направленных на коррекцию основных звеньев иммунной системы у пациентов с ГИСО.
Ключевые слова
Об авторах
С. В. БойчукРоссия
Бойчук Сергей Васильевич - кафедра общей патологии ФГБОУ ВО «КГМУ» Минздрава России; Научно-исследовательская лаборатория «Биомаркер», Институт фундаментальной медицины и биологии, ФГАОУ ВО «КФУ»; кафедра радиотерапии и радиологии ФГБОУ ДПО «РМАНПО» Минздрава России.
420012 Казань, ул. Бутлерова, 49; 420008 Казань, ул. Кремлевская, 18, корп. 1; 125993 Москва, ул. Баррикадная, 2/1, стр. 1
С. А. Абдураева
Россия
Кафедра общей патологии ФГБОУ ВО «КГМУ» Минздрава России.
420012 Казань, ул. Бутлерова, 49
П. Б. Копнин
Россия
115522 Москва, Каширское шоссе, 24
Список литературы
1. Kindblom L.G., Remotti H.E., Aldenborg F., Meis-Kindblom J.M. Gastrointestinal pacemaker cell tumor (GIPACT): gastrointestinal stromal tumors show phenotypic characteristics of the interstitial cells of Cajal. Am J Pathol 1998;152(5):1259–69.
2. Steigen S.E., Eide T.J. Gastrointestinal stromal tumors (GISTs): a review. APMIS 2009;117(2):73–86. DOI: 10.1111/j.1600-0463.2008.00020.x
3. Цыганова И.В., Анурова О.А., Мазуренко Н.Н. Морфологические особенности и критерии прогноза стромальных опухолей желудочно-кишечного тракта. Архив патологии 2011;73(6):37–42.
4. Снигур П.В., Анурова О.А., Петровичев Н.Н., Сельчук В.Ю. Клинико-морфологические особенности стромальных опухолей желудочно-кишечного тракта. Вопросы онкологии 2003;49(6):705–10.
5. Стилиди И.С., Архири П.П., Анурова О.А., Мазуренко Н.Н. Стромальные опухоли желудочно-кишечного тракта: клинико-морфологические особенности, патогенез и современные подходы к лечению. Вестник Российской академии медицинских наук 2010;2:46–52.
6. Miettinen M., Lasota J. Gastrointestinal stromal tumors. Gastroenterol Clin North Am 2013;42(2):399–415. DOI: 10.1016/j.gtc.2013.01.001
7. Халиков Д.Д., Ахметзянов Ф.Ш., Петров С.В. Клинико-морфологическая характеристика гастроинтестинальных стромальных опухолей. Архив патологии 2017;79(4):48–55. DOI: 10.17116/patol201779448-55
8. Hirota S., Isozaki K., Moriyama Y. et al. Gain of function mutations of c-kit in human gastrointestinal stromal tumors. Science 1998;279(5350):577–80. DOI: 10.1126/science.279.5350.577
9. Sarlomo-Rikala M., Kovatich A.J., Barusevicius A., Miettinen M. CD117: a sensitive marker for gastrointestinal stromal tumors that is more specific than CD34. Mod Pathol 1998;11(8):728–34.
10. Hasegawa T., Matsuno Y., Shimoda T., Hirohashi S. Gastrointestinal stromal tumor: consistent CD117 immunostaining for diagnosis, and prognostic classification based on tumor size and MIB-1 grade. Hum Pathol 2002;33(6):669–76. DOI: 10.1053/hupa.2002.124116
11. Joensuu H., Rutkowski P., Nishida T. et al. KIT and PDGFRA mutations and the risk of GI stromal tumor recurrence. J Clin Oncol 2015;33(6):634–42. DOI: 10.1200/JCO.2014.57.4970
12. Miettinen M., Lasota J. Gastrointestinal stromal tumors: review on morphology, molecular pathology, prognosis, and differential diagnosis. Arch Pathol Lab Med 2006;130(10):1466–78. DOI: 10.5858/2006-130-1466-GSTROM
13. Brčić I., Argyropoulos A., Liegl-Atzwanger B. Update on molecular genetics of gastrointestinal stromal tumors. Diagnostics (Basel). 2021;11(2):194. DOI: 10.3390/diagnostics11020194
14. Niinuma T., Suzuki H., Sugai T. Molecular characterization and pathogenesis of gastrointestinal stromal tumor. Transl Gastroenterol Hepatol 2018;3:2. DOI: 10.21037/tgh.2018.01
15. Heinrich M.C., Corless C.L., Duensing A. et al. PDGFRA activating mutations in gastrointestinal stromal tumors. Science 2003;299(5607):708–10. DOI: 10.1126/science.1079666
16. Hirota S., Ohashi A., Nishida T. et al. Gain-of-function mutations of platelet-derived growth factor receptor alpha gene in gastrointestinal stromal tumors. Gastroenterology 2003;125(3):660–7. DOI: 10.1016/s0016-5085(03)01046-1
17. Lasota J., Miettinen M. KIT and PDGFRA mutations in gastrointestinal stromal tumors (GISTs). Semin Diagn Pathol 2006;23(2):91–102. DOI: 10.1053/j.semdp.2006.08.006
18. Kunstlinger H., Binot E., Merkelbach-Bruse S. et al. High-resolution melting analysis is a sensitive diagnostic tool to detect imatinib-resistant and imatinib-sensitive PDGFRA exon 18 mutations in gastrointestinal stromal tumors. Hum Pathol 2014;45(3):573–82. DOI: 10.1016/j.humpath.2013.10.025
19. Agaram N.P., Wong G.C., Guo T. et al. V600E BRAF mutations in imatinib-naive and imatinib-resistant gastrointestinal stromal tumors. Genes Chromosomes Cancer 2008;47(10):853–9. DOI: 10.1002/gcc.20589
20. Daniels M., Lurkin I., Pauli R. et al. Spectrum of KIT/PDGFRA/ BRAF mutations and phosphatidylinositol-3-kinase pathway gene alterations in gastrointestinal stromal tumors (GIST). Cancer Lett 2011;312(1):43–54. DOI: 10.1016/j.canlet.2011.07.029
21. Miettinen M., Fetsch J.F., Sobin L.H., Lasota J. Gastrointestinal stromal tumors in patients with neurofibromatosis 1: a clinicopathologic and molecular genetic study of 45 cases. Am J Surg Pathol 2006;30(1):90–6. DOI: 10.1097/01.pas.0000176433.81079.bd
22. Mussi C., Schildhaus H.U., Gronchi A. et al. Therapeutic consequences from molecular biology for gastrointestinal stromal tumor patients affected by neurofibromatosis type 1. Clin Cancer Res 2008;14(14):4550–5. DOI: 10.1158/1078-0432.CCR-08-0086
23. Pasini B., McWhinney S.R., Bei T. et al. Clinical and molecular genetics of patients with the Carney–Stratakis syndrome and germline mutations of the genes coding for the succinate dehydrogenase subunits SDHB, SDHC, and SDHD. Eur J Hum Genet 2008;16(1):79–88. DOI: 10.1038/sj.ejhg.5201904
24. Wozniak A., Rutkowski P., Schöffski P. et al. Tumor genotype is an independent prognostic factor in primary gastrointestinal stromal tumors of gastric origin: a European multicenter analysis based on ConticaGIST. Clin Cancer Res 2014;20(23):6105–16. DOI: 10.1158/1078-0432.CCR-14-1677
25. Цыганова И.В., Беляков И.С., Анурова О.А., Мазуренко Н.Н. Прогностическое значение мутаций KIT и PDGFRA в гастроинтестинальных стромальных опухолях. Молекулярная медицина 2015;2:64–70.
26. Беляков И.С., Анурова О.А., Снигур П.В. и др. Мутации генов с-KIT и PDGFRA и клинико-морфологические особенности стромальных опухолей желудочно-кишечного тракта. Вопросы онкологии. 2007;53(6):677–81.
27. Мазуренко Н.Н., Цыганова И.В. Молекулярно-генетические особенности и маркеры гастроинтестинальных стромальных опухолей. Успехи молекулярной онкологии 2015;2(2):29–40. DOI: 10.17650/2313-805X.2015.2.2.29-40
28. Sugiyama Y., Sasaki M., Kouyama M. et al. Current treatment strategies and future perspectives for gastrointestinal stromal tumors. World J Gastrointest Pathophysiol 2022;13(1):15–33. DOI: 10.4291/wjgp.v13.i1.15
29. Miettinen M., Lasota J. Gastrointestinal stromal tumors: pathology and prognosis at different sites. Semin Diagn Pathol 2006;23(2):70–83. DOI: 10.1053/j.semdp.2006.09.001
30. Gold J.S., Gönen M., Gutiérrez A. et al. Development and validation of a prognostic nomogram for recurrence-free survival after complete surgical resection of localised primary gastrointestinal stromal tumour: a retrospective analysis. Lancet Oncol 2009;10(11):1045–52. DOI: 10.1016/S1470-2045(09)70242-6
31. Joensuu H., Roberts P., Sarlomo-Rikkala M. et al. Effect of the tyrosine kinase inhibitor STI571 in a patient with a metastatic gastrointestinal stromal tumor. N Engl J Med 2001;344(14):1052–6. DOI: 10.1056/NEJM200104053441404
32. Tuveson D.A., Willis N.A., Jacks T. et al. STI571 inactivation of the gastrointestinal stromal tumor c-KIT oncoprotein: biological and clinical implications. Oncogene 2001;20(36):5054–8. DOI: 10.1038/sj.onc.1204704
33. Demetri G.D., von Mehren M., Blanke C.D. et al. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med 2002;347(7):472–80. DOI: 10.1056/NEJMoa020461
34. Heinrich M.C., Maki R.G., Corless C.L. et al. Primary and secondary kinase genotypes correlate with the biological and clinical activity of sunitinib in imatinib-resistant gastrointestinal stromal tumor. J Clin Oncol 2008;26(33):5352–9. DOI: 10.1200/JCO.2007.15.7461
35. Corless C.L., Schroeder A., Griffith D. et al. PDGFRA mutations in gastrointestinal stromal tumors: frequency, spectrum and in vitro sensitivity to imatinib. J Clin Oncol 2005;23(23):5357–64. DOI: 10.1200/JCO.2005.14.068
36. Pierotti М.А., Tamborini Е., Negr T. et al. Targeted therapy in GIST: in silico modeling for prediction of resistance. Nat Rev Clin Oncol 2011;8(3):161–70. DOI: 10.1038/nrclinonc.2011.3
37. Verweij J., Casali P.G., Zalcberg J. et al. Progression-free survival in gastrointestinal stromal tumors with high-dose imatinib: randomized trial. Lancet 2004;364(9440):1127–34. DOI: 10.1016/S0140-6736(04)17098-0
38. Gramza A.W., Corless C.L., Heinrich M.C. Resistance to tyrosine kinase inhibitors in gastrointestinal stromal tumors. Clin Cancer Res 2009;15(24):7510–8. DOI: 10.1158/1078-0432.CCR-09-0190
39. Napolitano A., Vincenzi B. Secondary KIT mutations: the GIST of drug resistance and sensitivity. Br J Cancer 2019;120(6):577–8. DOI: 10.1038/s41416-019-0388-7
40. Liegl B., Kepten I., Le C. et al. Heterogeneity of kinase inhibitor resistance mechanisms in GIST. J Pathol 2008;216(1):64–74. DOI: 10.1002/path.2382
41. Tarn C., Rink L., Merkel E. et al. Insulin-like growth factor 1 receptor is a potential therapeutic target for gastrointestinal stromal tumors. Proc Natl Acad Sci USA 2008;105(24):8387–92. DOI: 10.1073/pnas.0803383105
42. Sakurama K., Noma K., Takaoka M. et al. Inhibition of focal adhesion kinase as a potential therapeutic strategy for imatinib-resistant gastrointestinal stromal tumor. Mol Cancer Ther 2009;8(1):127–34. DOI: 10.1158/1535-7163.MCT-08-0884
43. Mahadevan D., Cooke L., Riley C. et al. A novel tyrosine kinase switch is a mechanism of imatinib resistance in gastrointestinal stromal tumors. Oncogene 2007;26(27):3909–19. DOI: 10.1038/sj.onc.1210173
44. Javidi-Sharifi N., Traer E., Martinez J. et al. Crosstalk between KIT and FGFR3 promotes gastrointestinal stromal tumor cell growth and drug resistance. Cancer Res 2015;75(5):880–91. DOI: 10.1158/0008-5472.CAN-14-0573
45. Li F., Huynh H., Li X. et al. FGFR-mediated reactivation of MAPK signaling attenuates antitumor effects of imatinib in gastrointestinal stromal tumors. Cancer Discov 2015;5(4):438–51. DOI: 10.1158/2159-8290.cd-14-0763
46. Boichuk S.V., Galembikova A., Dunaev P. et al. A novel receptor tyrosine kinase switch promotes gastrointestinal stromal tumor drug resistance. Molecules 2017;22(12):2152. DOI: 10.3390/molecules22122152
47. Rock E.P., Goodman V., Jiang J.X. et al. Food and Drug Administration drug approval summary: sunitinib malate for the treatment of gastrointestinal stromal tumor and advanced renal cell carcinoma. Oncologist 2007;12(1):107–13. DOI: 10.1634/theoncologist.12-1-107
48. Sugiyama Y., Sasaki M., Kouyama M. et al. Current treatment strategies and future perspectives for gastrointestinal stromal tumors. World J Gastrointest Pathophysiol 2022;13(1):15–33. DOI: 10.4291/wjgp.v13.i1.15
49. Ben-Ami E., Barysauskas C.M., von Mehren M. et al. Long-term follow-up results of the multicenter phase II trial of regorafenib in patients with metastatic and/or unresectable GI stromal tumor after failure of standard tyrosine kinase inhibitor therapy. Ann Oncol 2016;27:1794–9. DOI: 10.1093/annonc/mdw228
50. Blay J.Y., Serrano C., Heinrich M.C. et al. Ripretinib in patients with advanced gastrointestinal stromal tumours (INVICTUS): a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol 2020;21(7):923–34. DOI: 10.1016/S1470-2045(20)30168-6
51. Heinrich M.C., Jones R.L., von Mehren M. et al. Avapritinib in advanced PDGFRA D842V-mutant gastrointestinal stromal tumour (NAVIGATOR): a multicentre, open-label, phase 1 trial. Lancet Oncol 2020;21(7):935–46. DOI: 10.1016/S1470-2045(20)30269-2
52. Cameron S., Haller F., Dudas J. et al. Immune cells in primary gastrointestinal stromal tumors. Eur J Gastroenterol Hepatol 2008;20(4):327–34. DOI: 10.1097/MEG.0b013e3282f3a403
53. Van Dongen M., Savage N.D., Jordanova E.S. et al. Antiinflammatory M2 type macrophages characterize metastasized and tyrosine kinase inhibitor-treated gastrointestinal stromal tumors. Int J Cancer 2010;127(4):899–909. DOI: 10.1002/ijc.25113
54. Jordanova E.S., Gorter A., Ayachi O. et al. Human leukocyte antigen class I, MHC class I chain-related molecule A, and CD8+/ regulatory T-cell ratio: which variable determines survival of cervical cancer patients? Clin Cancer Res 2008;14(7):2028–35. DOI: 10.1158/1078-0432.CCR-07-4554
55. Lee C.H., Espinosa I., Vrijaldenhoven S. et al. Prognostic significance of macrophage infiltration in leiomyosarcomas. Clin Cancer Res 2008;14(5):1423–30. DOI: 10.1158/1078-0432.CCR-07-1712
56. Komohara Y., Ohnishi K., Kuratsu J. et al. Possible involvement of the M2 anti-inflammatory macrophage phenotype in growth of human gliomas. J Pathol 2008;216(1):15–24. DOI: 10.1002/path.2370
57. Rusakiewicz S., Semeraro M., Sarabi M. et al. Immune infiltrates are prognostic factors in localized gastrointestinal stromal tumors. Cancer Res 2013;73(12):3499–510. DOI: 10.1158/0008-5472.CAN-13-0371
58. Сameron S., Gieselmann M., Blaschke M., et al. Immune cells in primary and metastatic gastrointestinal stromal tumors (GIST). Int J Clin Exp Pathol 2014;7(7):3563–79.
59. Pantaleo M.A., Tarantino G., Agostinelli C. et al. Immune microenvironment profiling of gastrointestinal stromal tumors (GIST) shows gene expression patterns associated to immune checkpoint inhibitors response. Oncoimmunology 2019;8(9):e1617588. DOI: 10.1080/2162402X.2019.1617588
60. Kocsmár É., Kocsmár I., Szalai L. et al. Crosstesting of major molecular markers indicates distinct pathways of tumorigenesis in gastric adenocarcinomas and synchronous gastrointestinal stromal tumors. Sci Rep 2020;10:22212.
61. Corless C.L., Ballman K.V., Antonescu C.R. et al. Pathologic and molecular features correlate with long-term outcome after adjuvant therapy of resected primary GI stromal tumor: the ACOSOG Z9001 trial. J Clin Oncol 2014;32(15):1563–70. DOI: 10.1200/JCO.2013.51.2046
62. Vitiello G.A., Bowler T.G., Liu M. et al. Differential immune profiles distinguish the mutational subtypes of gastrointestinal stromal tumor. J Clin Invest 2019;129(5):1863–77. DOI: 10.1172/JCI124108
63. Cicchini L., Westrich J.A., Xu T. et al. Suppression of antitumor immune responses by human papillomavirus through epigenetic downregulation of CXCL14. mBio 2016;7(3):e00270–16. DOI: 10.1128/mBio.00270-16
64. Lee H.T., Liu S.P., Lin C.H. et al. A crucial role of CXCL14 for promoting regulatory T cells activation in stroke. Theranostics 2017;7(4):855–75. DOI: 10.7150/thno.17558
65. Ménard C., Blay J.Y., Borg C. et al. Natural killer cell IFN-gamma levels predict long-term survival with imatinib mesylate therapy in gastrointestinal stromal tumor-bearing patients. Cancer Res 2009;69(8):3563–9. DOI: 10.1158/0008-5472.CAN-08-3807
66. Goodman A.M., Kato S., Bazhenova L. et al. Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers. Mol Cancer Ther 2017;16(11):2598–608. DOI: 10.1158/1535-7163.MCT-17-0386
67. Zitvogel L., Rusakiewicz S., Routy B. et al. Immunological off-target effects of imatinib. Nat Rev Clin Oncol 2016;13(7):431–46. DOI: 10.1038/nrclinonc.2016.41
68. Borg C., Terme M., Taïeb J. et al. Novel mode of action of c-kit tyrosine kinase inhibitors leading to NK cell-dependent antitumor effects. J Clin Invest 2004;114(3):379–88. DOI: 10.1172/JCI21102
69. Balachandran V.P., Cavnar M.J., Zeng S. et al. Imatinib potentiates antitumor T cell responses in gastrointestinal stromal tumor through the inhibition of Ido. Nat Med 2011;17(9):1094–100. DOI: 10.1038/nm.2438
70. Sato E., Olson S.H., Ahn J. et al. Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci USA 2005;102(51):18538–43. DOI: 10.1073/pnas.0509182102
71. Asano Y., Kashiwagi S., Goto W. et al. Tumour infiltrating CD8 to FOXP3 lymphocyte ratio in predicting treatment responses to neoadjuvant chemotherapy of aggressive breast cancer. Br J Surg 2016;103(7):845–54. DOI: 10.1002/bjs.10127
72. Arshad J., Costa P.A., Barreto-Coelho P. et al. Immunotherapy strategies for gastrointestinal stromal tumor. Cancers (Basel) 2021;13(14):3525. DOI: 10.3390/cancers13143525
73. Dimino A., Brando C., Algeri L. et al. Exploring the dynamic crosstalk between the immune system and genetics in gastrointestinal stromal tumors. Cancers (Basel) 2022;15(1):216. DOI: 10.3390/cancers15010216
74. Siozopoulou V., Domen A., Zwaenepoel K. et al. Immune checkpoint inhibitory therapy in sarcomas: is there light at the end of the tunnel? Cancers (Basel) 2021;13(2):360. DOI: 10.3390/cancers13020360
75. Vallilas C., Sarantis P., Kyriazoglou A. et al. Gastrointestinal stromal tumors (GISTs): novel therapeutic strategies with immunotherapy and small molecules. Int J Mol Sci 2021;22(2):493. DOI: 10.3390/ijms22020493
76. Roulleaux Dugage M., Jones R.L., Trent J. et al. Beyond the driver mutation: immunotherapies in gastrointestinal stromal tumors. Front Immunol 2021;12:715727. DOI: 10.3389/fimmu.2021.715727
77. Chen L.L., Chen X., Choi H. et al. Exploiting antitumor immunity to overcome relapse and improve remission duration. Cancer Immunol Immunother 2012;61(7):1113–24. DOI: 10.1007/s00262-011-1185-1
78. Bertucci F., Finetti P., Mamessier E. et al. PDL1 expression is an independent prognostic factor in localized GIST. Oncoimmunology 2015;4(5):e1002729. DOI: 10.1080/2162402X.2014.1002729
79. Seifert A.M., Zeng S., Zhang J.Q. et al. PD-1/PD-L1 blockade enhances T-cell activity and antitumor efficacy of imatinib in gastrointestinal stromal tumors. Clin Cancer Res 2017;23(2):454–65. DOI: 10.1158/1078-0432.ccr-16-1163
80. Zhao R., Song Y., Wang Y. et al. PD-1/PD-L1 blockade rescue exhausted CD8+ T cells in gastrointestinal stromal tumours via the PI3K/Akt/mTOR signalling pathway. Cell Prolif 2019;52(3):e12571. DOI: 10.1111/cpr.12571
81. Martin-Broto J., Moura D.S. New drugs in gastrointestinal stromal tumors. Curr Opin Oncol 2020;32(4):314–20. DOI: 10.1097/CCO.0000000000000642
82. A phase I trial of ipilimumab (Immunotherapy) and imatinib mesylate (c-Kit inhibitor) in patients with advanced malignancies. Available at: https://clinicaltrials.gov/ct2/show/NCT01738139
83. Reilley M.J., Bailey A., Subbiah V. et al. Phase I clinical trial of combination imatinib and ipilimumab in patients with advanced malignancies. J Immunother Cancer 2017;5:35. DOI: 10.1186/s40425-017-0238-1
84. Phase I study of dasatinib in combination with ipilimumab for patients with advanced gastrointestinal stromal tumor and other sarcomas. Available at: https://clinicaltrials.gov/ct2/show/record/NCT01643278
85. D’Angelo S.P., Shoushtari A.N., Keohan M.L. et al. Combined kit and CTLA-4 blockade in patients with refractory GIST and other advanced sarcomas: a phase Ib study of dasatinib plus ipilimumab. Clin Cancer Res 2017;23(12):2972–80. DOI: 10.1158/1078-0432.CCR-16-2349
86. Epacadostat and pembrolizumab in patients with GIST. Available at: https://clinicaltrials.gov/ct2/show/NCT03291054
87. A phase 3 randomized, double-blind, placebo-controlled study of pembrolizumab (MK-3475) in combination with epacadostat or placebo in subjects with unresectable or metastatic melanoma (Keynote-252/ECHO-301). Available at: https://clinicaltrials.gov/ct2/show/NCT02752074
88. PDR001 plus imatinib for metastatic or unresectable GIST. Available at: https://clinicaltrials.gov/ct2/show/NCT03609424
89. A prospective, randomized, multicenter, comparative study of the efficacy of imatinib resumption combined with atezolizumab versus imatinib resumption alone in patients with unresectable advanced gastrointestinal stromal tumors (GIST) after failure of standard treatments (ATEZOGIST). Available at: https://clinicaltrials.gov/ct2/show/NCT05152472
90. A phase I/II study of regorafenib plus avelumab in solid tumors. Available at: https://clinicaltrials.gov/ct2/show/record/NCT03475953
91. A phase II, single arm study of avelumab in combination with axitinib in patients with unresectable/metastatic gastrointestinal stromal tumor after failure of standard therapy – AXAGIST. Available at: https://clinicaltrials.gov/ct2/show/study/NCT04258956
92. A randomized phase 2 study of nivolumab monotherapy versus nivolumab combined with ipilimumab in patients with metastatic or unresectable gastrointestinal stromal tumor (GIST). Available at: https://clinicaltrials.gov/ct2/show/NCT02880020
93. Singh A.S., Chmielowski B., Hecht J.R. et al. A randomized phase II study of nivolumab monotherapy versus nivolumab combined with ipilimumab in advanced gastrointestinal stromal tumor (GIST). J Clin Oncol 2019;37:11017. DOI: 10.1200/JCO.2019.37.15_suppl.11017
94. Edris B., Willingham S.B., Weiskopf K. et al. Anti-KIT monoclonal antibody inhibits imatinib-resistant gastrointestinal stromal tumor growth. Proc Natl Acad Sci USA 2013;110(9):3501–6. DOI: 10.1073/pnas.1222893110
95. Abrams T.J., Connor A., Fanton C.P. et al. Preclinical antitumor activity of a novel anti-c-KIT antibody-drug conjugate against mutant and wild-type c-KIT-positive solid tumors. Clin Cancer Res 2018;24(17):4297–308. DOI: 10.1158/1078-0432.CCR-17-3795
96. Zhao W.Y., Zhuang C., Xu J. et al. Somatostatin receptors in gastrointestinal stromal tumors: new prognostic biomarker and potential therapeutic strategy. Am J Transl Res 2014;6(6):831–40.
97. A study of XmAb®18087 in subjects with NET and GIST. Available at: https://clinicaltrials.gov/ct2/show/NCT03411915
98. Katz S.C., Burga R.A., Naheed S. et al. Anti-KIT designer T cells for the treatment of gastrointestinal stromal tumor. J Transl Med 2013;11:46. DOI: 10.1186/1479-5876-11-46
99. Ilieva K.M., Cheung A., Mele S. et al. Chondroitin sulfate proteoglycan 4 and its potential as an antibody immunotherapy target across different tumor types. Front Immunol 2018;8:1911. DOI: 10.3389/fimmu.2017.01911
100. De Nonneville A., Finetti P., Picard M. et al. CSPG4 expression in GIST is associated with better prognosis and strong cytotoxic immune response. Cancers (Basel) 2022;14(5):1306. DOI: 10.3390/cancers14051306
101. Leuci V., Donini C., Grignani G. et al. CSPG4-Specific CAR.CIK lymphocytes as a novel therapy for the treatment of multiple soft-tissue sarcoma histotypes. Clin Cancer Res 2020;26(23):6321–34. DOI: 10.1158/1078-0432.CCR-20-0357
Рецензия
Для цитирования:
Бойчук С.В., Абдураева С.А., Копнин П.Б. Иммунотерапия гастроинтестинальных стромальных опухолей: состояние вопроса и перспективы. Успехи молекулярной онкологии. 2023;10(2):17-29. https://doi.org/10.17650/2313-805X-2023-10-2-17-29
For citation:
Boichuk S.V., Abduraeva S.A., Kopnin P.B. Immunotherapy of gastrointestinal stromal tumors: current view and future directions. Advances in Molecular Oncology. 2023;10(2):17-29. (In Russ.) https://doi.org/10.17650/2313-805X-2023-10-2-17-29