Механизмы действия растительных полифенолов на инициацию канцерогенеза
https://doi.org/10.17650/2313-805X-2023-10-2-30-41
Аннотация
Генетический аппарат клеток человеческого организма находится под постоянным воздействием большого спектра генотоксичных и негенотоксичных агентов, как экзогенных, так и эндогенных. возникающие в результате таких воздействий генетические и эпигенетические нарушения являются звеньями молекулярного патогенеза злокачественных новообразований. для профилактики развития таких нарушений предложены несколько различных подходов, включая подавление генотоксичного воздействия с помощью химических соединений. Благодаря способности оказывать влияние на активацию проканцерогенов и регуляцию окислительного стресса, растительные полифенольные соединения являются одними из перспективных кандидатов на роль химиопрофилактических антиканцерогенных препаратов. в обзоре рассмотрены структура и классификация полифенольных соединений и механизмы их взаимодействия с биологическими макромолекулами, а также молекулярные механизмы их влияния на ферменты, участвующие в 1-й фазе активации ксенобиотиков и регуляции окислительного стресса. Также проведен анализ эффектов природных полифенолов на микрофлору человека.
Ключевые слова
Об авторах
А. В. ЛюбителевРоссия
Любителев Александр Викторович - кафедра биоинженерии ФГБОУ ВО «МГУ им. М.В. Ломоносова».
119234 Москва, Ленинские горы, 1, стр. 12
А. Л. Сивкина
Россия
Кафедра биоинженерии ФГБОУ ВО «МГУ им. М.В. Ломоносова».
119234 Москва, Ленинские горы, 1, стр. 12
О. А. Власова
Россия
115522 Москва, Каширское шоссе, 24
Г. A. Белицкий
Россия
115522 Москва, Каширское шоссе, 24
В. М. Студитский
Россия
Кафедра биоинженерии ФГБОУ ВО «МГУ им. М.В. Ломоносова».
119234 Москва, Ленинские горы, 1, стр. 12; 333 Cottman Ave, Philadelphia 19111, Pennsylvania, USA
Список литературы
1. Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discov 2022;12(1):31–46. DOI: 10.1158/2159-8290.CD-21-1059
2. Barnes J.L., Zubair M., John K. et al. Carcinogens and DNA damage. Biochem Soc Trans 2018;46(5):1213–24. DOI: 10.1042/BST20180519
3. Santivasi W.L., Xia F. Ionizing radiation-induced DNA damage, response, and repair. Antioxid Redox Signal 2014;21:251–9. DOI: 10.1089/ars.2013.5668
4. Smith A.J., Smith L.A. Viral carcinogenesis. In: Progress in molecular biology and translational science. Elsevier, 2016. Pp. 121–168.
5. Tomasetti C., Li L., Vogelstein B. Stem cell divisions, somatic mutations, cancer etiology, and cancer prevention. Science 2017;355(6331):1330–4. DOI: 10.1126/science.aaf9011
6. Mucci L.A., Hjelmborg J.B., Harris J.R. et al. Familial risk and heritability of cancer among twins in nordic countries. JAMA 2016;315(1):68–76. DOI: 10.1001/jama.2015.17703
7. Song M., Vogelstein B., Giovannucci E.L. et al. Cancer prevention: molecular and epidemiologic consensus. Science 2018;361(6409):1317–8. DOI: 10.1126/science.aau3830
8. Maksimova V., Shalginskikh N., Vlasova O. et al. HeLa TI cell-based assay as a new approach to screen for chemicals able to reactivate the expression of epigenetically silenced genes. PLoS One 2021;16(6):e0252504. DOI: 10.1371/journal.pone.0252504
9. Kirsanov K., Fetisov T., Lesovaya E.A. et al. Prevention of colorectal carcinogenesis by DNA-binding small-molecule curaxin CBL0137 involves suppression of wnt signaling. Cancer Prev Res (Phila Pa) 2020;13(1):53–64. DOI: 10.1158/1940-6207.CAPR-19-0198
10. Erb M., Kliebenstein D.J. Plant Secondary metabolites as defenses, regulators, and primary metabolites: the blurred functional trichotomy. Plant Physiol 2020;184(1):39–52. DOI: 10.1104/pp.20.00433
11. Valdés-Jiménez A., Peña-Varas C., Borrego-Muñoz P. et al. PSC-db: a structured and searchable 3d-database for plant secondary compounds. Molecules 2021;26(4):1124. DOI: 10.3390/molecules26041124
12. War A.R., Paulraj M.G., Ahmad T. et al. Mechanisms of plant defense against insect herbivores. Plant Signal Behav 2012;7(10):1306–20. DOI: 10.4161/psb.21663
13. Cheynier V., Comte G., Davies K.M. et al. Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol Biochem PPB 2013;72:1–20. DOI: 10.1016/j.plaphy.2013.05.009
14. El Gharras H. Polyphenols: food sources, properties and applications – a review: nutraceutical polyphenols. Int J Food Sci Technol 2009;44:2512–8. DOI: 10.1111/j.1365-2621.2009.02077.x
15. Fruit and vegetable phytochemicals. Ed. by L.A. De la Rosa, E. Alvarez-Parrilla, G.A. Gonzlez-Aguilar. Wiley-Blackwell, Oxford, UK, 2009.
16. Khoddami A., Wilkes M., Roberts T. Techniques for analysis of plant phenolic compounds. Molecules 2013;18(2):2328–75. DOI: 10.3390/molecules18022328
17. Singla R.K., Dubey A.K., Garg A. et al. Natural polyphenols: chemical classification, definition of classes, subcategories, and structures. J AOAC Int 2019;102(5):1397–400. DOI: 10.5740/jaoacint.19-0133
18. Soto-Vaca A., Gutierrez A., Losso J.N. et al. Evolution of phenolic compounds from color and flavor problems to health benefits. J Agric Food Chem 2012;60(27):6658–77. DOI: 10.1021/jf300861c
19. Corcoran M.P., McKay D.L., Blumberg J.B. Flavonoid basics: chemistry, sources, mechanisms of action, and safety. J Nutr Gerontol Geriatr 2012;31(3):176–89. DOI: 10.1080/21551197.2012.698219
20. Pérez-Jiménez J., Neveu V., Vos F., Scalbert A. Identification of the 100 richest dietary sources of polyphenols: an application of the Phenol-Explorer database. Eur J Clin Nutr 2010;64:S112–20. DOI: 10.1038/ejcn.2010.221
21. Van Wyk B.-E., Wink M. Medicinal plants of the world: an illustrated scientific guide to important medicinal plants and their uses. 1st edn. Timber Press, Portland, 2004.
22. Pallauf K., Giller K., Huebbe P., Rimbach G. Nutrition and healthy ageing: calorie restriction or polyphenol-rich “MediterrAsian” diet? Oxid Med Cell Longev 2013;2013:707421. DOI: 10.1155/2013/707421
23. Grosso G., Godos J., Lamuela-Raventos R. et al. A comprehensive meta-analysis on dietary flavonoid and lignan intake and cancer risk: level of evidence and limitations. Mol Nutr Food Res 2017;61(4). DOI: 10.1002/mnfr.201600930
24. Leri M., Scuto M., Ontario M.L. et al. Healthy effects of plant polyphenols: molecular mechanisms. Int J Mol Sci 2020;21(4):1250. DOI: 10.3390/ijms21041250
25. Кирсанов К.И., Власова О.А., Фетисов Т.И. и др. Влияние ДНК-тропных антиканцерогенных соединений на механизмы регуляции экспрессии генов. Успехи молекулярной онкологии 2018;5(4):41–63. DOI: 10.17650/2313-805X-2018-5-4-41-63
26. Patra S., Pradhan B., Nayak R. et al. Dietary polyphenols in chemoprevention and synergistic effect in cancer: clinical evidences and molecular mechanisms of action. Phytomedicine 2021;90:153554. DOI: 10.1016/j.phymed.2021.153554
27. Hazafa A., Rehman K.-U., Jahan N., Jabeen Z. The role of polyphenol (flavonoids) compounds in the treatment of cancer cells. Nutr Cancer 2020;72(3):386–97. DOI: 10.1080/01635581.2019.1637006
28. Duo J., Ying G.-G., Wang G.-W., Zhang L. Quercetin inhibits human breast cancer cell proliferation and induces apoptosis via Bcl-2 and Bax regulation. Mol Med Rep 2012;5(6):1453–6. DOI: 10.3892/mmr.2012.845
29. Adhami V.M., Malik A., Zaman N. et al. Combined inhibitory effects of green tea polyphenols and selective cyclooxygenase-2 inhibitors on the growth of human prostate cancer cells both in vitro and in vivo. Clin Cancer Res Off J Am Assoc Cancer Res 2007;13(5):1611–9. DOI: 10.1158/1078-0432.CCR-06-2269
30. Chua C.C., Hamdy R.C., Chua B.H. Mechanism of transforming growth factor-beta1-induced expression of vascular endothelial growth factor in murine osteoblastic MC3T3-E1 cells. Biochim Biophys Acta 2000;1497(1):69–76. DOI: 10.1016/s0167-4889(00)00040-9
31. Chadalapaka G., Jutooru I., Chintharlapalli S. et al. Curcumin decreases specificity protein expression in bladder cancer cells. Cancer Res 2008;68(13):5345–54. DOI: 10.1158/0008-5472.CAN-07-6805
32. Zhou Y., Zheng J., Li Y. et al. Natural polyphenols for prevention and treatment of cancer. Nutrients 2016;8(8):515. DOI: 10.3390/nu8080515
33. Choudhari A.S., Mandave P.C., Deshpande M. et al. Phytochemicals in cancer treatment: from preclinical studies to clinical practice. Front Pharmacol 2019;10:1614. DOI: 10.3389/fphar.2019.01614
34. Bisol Â., Campos P.S., Lamers M.L. Flavonoids as anticancer therapies: а systematic review of clinical trials. Phytother Res 2020;34(3):568–82. DOI: 10.1002/ptr.6551
35. Nguyen M.M., Ahmann F.R., Nagle R.B. et al. Randomized, double-blind, placebo-controlled trial of polyphenon E in prostate cancer patients before prostatectomy: evaluation of potential chemopreventive activities. Cancer Prev Res Phila Pa 2012;5(2):290–8. DOI: 10.1158/1940-6207.CAPR-11-0306
36. Thomas R., Williams M., Sharma H. et al. A double-blind, placebo-controlled randomised trial evaluating the effect of a polyphenolrich whole food supplement on PSA progression in men with prostate cancer – the UK NCRN Pomi-T study. Prostate Cancer Prostatic Dis 2014;7(2):180–6. DOI: 10.1038/pcan.2014.6
37. Wink M. Modes of action of herbal medicines and plant secondary metabolites. Medicines 2015;2(3):251–86. DOI: 10.3390/medicines2030251
38. Tachibana H., Koga K., Fujimura Y., Yamada K. A receptor for green tea polyphenol EGCG. Nat Struct Mol Biol 2004;11(4): 380–1. DOI: 10.1038/nsmb743
39. Kuzuhara T., Suganuma M., Fujiki H. Green tea catechin as a chemical chaperone in cancer prevention. Cancer Lett 2008;261(1):12–20. DOI: 10.1016/j.canlet.2007.10.037
40. Fujimura Y., Tachibana H., Yamada K. Lipid raft-associated catechin suppresses the FcϵRI expression by inhibiting phosphorylation of the extracellular signal-regulated kinase1/2. FEBS Lett 2004;556(1–3):204–10. DOI: 10.1016/S0014-5793(03)01432-7
41. N’soukpoé-Kossi C.N., Bourassa P., Mandeville J.S. et al. Structural modeling for DNA binding to antioxidants resveratrol, genistein and curcumin. J Photochem Photobiol B 2015;151:69–75. DOI: 10.1016/j.jphotobiol.2015.07.007
42. Zenkov R.G., Kirsanov K.I., Ogloblina A.M. et al. Effects of G-Quadruplex-binding plant secondary metabolites on c-MYC expression. Int J Mol Sci 2022;23(16):9209. DOI: 10.3390/ijms23169209
43. Omiecinski C.J., Vanden Heuvel J.P., Perdew G.H., Peters J.M. Xenobiotic metabolism, disposition, and regulation by receptors: from biochemical phenomenon to predictors of major toxicities. Toxicol Sci 2011;120(Suppl.1):S49–75. DOI: 10.1093/toxsci/kfq338
44. Denison M.S., Soshilov A.A., He G. et al. Exactly the same but different: promiscuity and diversity in the molecular mechanisms of action of the aryl hydrocarbon (dioxin) receptor. Toxicol Sci 2011;124(1):1–22. DOI: 10.1093/toxsci/kfr218
45. Xue Z., Li D., Yu W. et al. Mechanisms and therapeutic prospects of polyphenols as modulators of the aryl hydrocarbon receptor. Food Funct 2017;8(4):1414–37. DOI: 10.1039/C6FO01810F
46. Ciolino H.P., Daschner P.J., Wang T.T.Y., Yeh G.C. Effect of curcumin on the aryl hydrocarbon receptor and cytochrome P450 1A1 in MCF-7 human breast carcinoma cells. Biochem Pharmacol 1998;56(2):197–206. DOI: 10.1016/S0006-2952(98)00143-9
47. Ciolino H.P., Daschner P.J., Yeh G.C. Dietary flavonols quercetin and kaempferol are ligands of the aryl hydrocarbon receptor that affect CYP1A1 transcription differentially. Biochem J 1999;340(Pt. 3):715–22.
48. Perdew G.H., Hollingshead B.D., Dinatale B.C. et al. Estrogen receptor expression is required for low-dose resveratrol-mediated repression of aryl hydrocarbon receptor activity. J Pharmacol Exp Ther 2010;335(2):273–83. DOI: 10.1124/jpet.110.170654
49. Fukuda I., Mukai R., Kawase M. et al. Interaction between the aryl hydrocarbon receptor and its antagonists, flavonoids. Biochem Biophys Res Commun 2007;359(3):822–7. DOI: 10.1016/j.bbrc.2007.05.199
50. Jin U.-H., Park H., Li X. et al. Structure-dependent modulation of aryl hydrocarbon receptor-mediated activities by flavonoids. Toxicol Sci 2018;164(1):205–17. DOI: 10.1093/toxsci/kfy075
51. Kaur M., Badhan R.K.S. Phytochemical mediated-modulation of the expression and transporter function of breast cancer resistance protein at the blood-brain barrier: an in-vitro study. Brain Res 2017;1654(Pt. A):9–23. DOI: 10.1016/j.brainres.2016.10.020
52. Goya-Jorge E., Giner R.M., Sylla-Iyarreta Veitía M. et al. Predictive modeling of aryl hydrocarbon receptor (AhR) agonism. Chemosphere 2020;256:127068. DOI: 10.1016/j.chemosphere.2020.127068
53. Goya-Jorge E., Jorge Rodríguez M.E., Veitía M.S.-I., Giner R.M. Plant occurring flavonoids as modulators of the aryl hydrocarbon receptor. Molecules 2021;26(8):2315. DOI: 10.3390/molecules26082315
54. Mukai R., Shirai Y., Saito N. et al. Suppression mechanisms of flavonoids on aryl hydrocarbon receptor-mediated signal transduction. Arch Biochem Biophys 2010;501(1):134–41. DOI: 10.1016/j.abb.2010.05.002
55. Nishiumi S., Yoshida K.-I., Ashida H. Curcumin suppresses the transformation of an aryl hydrocarbon receptor through its phosphorylation. Arch Biochem Biophys 2007;466(2):267–73. DOI: 10.1016/j.abb.2007.08.007
56. Quadri S.A., Qadri A.N., Hahn M.E. et al. The bioflavonoid galangin blocks aryl hydrocarbon receptor activation and polycyclic aromatic hydrocarbon-induced pre-B cell apoptosis. Mol Pharmacol 2000;58(3):515–25. DOI: 10.1124/mol.58.3.515
57. Palermo C.M., Westlake C.A., Gasiewicz T.A. Epigallocatechin gallate inhibits aryl hydrocarbon receptor gene transcription through an indirect mechanism involving binding to a 90 kDa heat shock protein. Biochemistry 2005;44(13):5041–52. DOI: 10.1021/bi047433p
58. Ciolino H.P., Daschner P.J., Yeh G.C. Resveratrol inhibits transcription of CYP1A1 in vitro by preventing activation of the aryl hydrocarbon receptor. Cancer Res 1998;58(24):5707–12.
59. Froyen E.B., Steinberg F.M. Genistein decreases basal hepatic cytochrome P450 1A1 protein expression and activity in Swiss Webster mice. Nutr Res 2016;36(5):430–9. DOI: 10.1016/j.nutres.2016.01.001
60. Macpherson L., Matthews J. Inhibition of aryl hydrocarbon receptor-dependent transcription by resveratrol or kaempferol is independent of estrogen receptor α expression in human breast cancer cells. Cancer Lett 2010;299(2):119–29. DOI: 10.1016/j.canlet.2010.08.010
61. Manikandan P., Nagini S. Cytochrome P450 structure, function and clinical significance: a review. Curr Drug Targets 2018;19(1):38–54. DOI: 10.2174/1389450118666170125144557
62. Wahlang B., Falkner K.C., Cave M.C., Prough R.A. Role of cytochrome P450 monooxygenase in carcinogen and chemotherapeutic drug metabolism. In: Advances in Pharmacology. Elsevier, 2015. Pp. 1–33.
63. Shimada T., Tanaka K., Takenaka S. et al. Structure-function relationships of inhibition of human cytochromes P450 1A1, 1A2, 1B1, 2C9, and 3A4 by 33 flavonoid derivatives. Chem Res Toxicol 2010;23(12):1921–35. DOI: 10.1021/tx100286d
64. Kimura Y., Ito H., Ohnishi R., Hatano T. Inhibitory effects of polyphenols on human cytochrome P450 3A4 and 2C9 activity. Food Chem Toxicol 2020;48(1):429–35. DOI: 10.1016/j.fct.2009.10.041
65. De Bont R. Endogenous DNA damage in humans: a review of quantitative data. Mutagenesis 2004;19(3):169–85. DOI: 10.1093/mutage/geh025
66. Jomova K., Valko M. Advances in metal-induced oxidative stress and human disease. Toxicology 2011;283(2-3):65–87. DOI: 10.1016/j.tox.2011.03.001
67. Pereira C., Grácio D., Teixeira J.P., Magro F. Oxidative stress and DNA damage: implications in inflammatory bowel disease. Inflamm Bowel Dis 2015;21(10):2403–17. DOI: 10.1097/MIB.0000000000000506
68. Gebicki J.M. Oxidative stress, free radicals and protein peroxides. Arch Biochem Biophys 2016;595:33–9. DOI: 10.1016/j.abb.2015.10.021
69. Paulsen C.E., Carroll K.S. Cysteine-mediated redox signaling: chemistry, biology, and tools for discovery. Chem Rev 2013;113(7):4633–79. DOI: 10.1021/cr300163e
70. Chen J.-W., Zhu Z.-Q., Hu T.-X., Zhu D.-Y. Structure-activity relationship of natural flavonoids in hydroxyl radical-scavenging effects. Acta Pharmacol Sin 2002;23(7):667–72.
71. Olszowy M. What is responsible for antioxidant properties of polyphenolic compounds from plants? Plant Physiol Biochem 2019;144:135–43. DOI: 10.1016/j.plaphy.2019.09.039
72. Nakagawa T., Yokozawa T. Direct scavenging of nitric oxide and superoxide by green tea. Food Chem Toxicol 2002;40(12):1745–50. DOI: 10.1016/S0278-6915(02)00169-2
73. Shanmugam T., Selvaraj M., Poomalai S. Epigallocatechin gallate potentially abrogates fluoride induced lung oxidative stress, inflammation via Nrf2/Keap1 signaling pathway in rats: an in-vivo and in-silico study. Int Immunopharmacol 2016;39:128–39. DOI: 10.1016/j.intimp.2016.07.022
74. Giftson J.S., Jayanthi S., Nalini N. Chemopreventive efficacy of gallic acid, an antioxidant and anticarcinogenic polyphenol, against 1,2-dimethyl hydrazine induced rat colon carcinogenesis. Invest New Drugs 2010;28:251–259. DOI: 10.1007/s10637-009-9241-9
75. Sharmila G., Athirai T., Kiruthiga B. et al. Chemopreventive effect of quercetin in MNU and testosterone induced prostate cancer of sprague-dawley rats. Nutr Cancer 2014;66:38–46. DOI: 10.1080/01635581.2014.847967
76. Henning S.M., Niu Y., Lee N.H. et al. Bioavailability and antioxidant activity of tea flavanols after consumption of green tea, black tea, or a green tea extract supplement. Am J Clin Nutr 2004;80(6):1558–64. DOI: 10.1093/ajcn/80.6.1558
77. Fallah A.A., Sarmast E., Jafari T. Effect of dietary anthocyanins on biomarkers of oxidative stress and antioxidative capacity: a systematic review and meta-analysis of randomized controlled trials. J Funct Foods 2020;68:103912. DOI: 10.1016/j.jff.2020.103912
78. Mira L., Fernandez M.T., Santos M. et al. Interactions of flavonoids with iron and copper ions: a mechanism for their antioxidant activity. Free Radic Res 2002;6:1199–208. DOI: 10.1080/1071576021000016463
79. Adjimani J.P., Asare P. Antioxidant and free radical scavenging activity of iron chelators. Toxicol Rep 2015;2:721–8. DOI: 10.1016/j.toxrep.2015.04.005
80. McCubrey J.A., Lertpiriyapong K., Steelman L.S. et al. Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs. Aging 2017;9(6):1477–536. DOI: 10.18632/aging.101250
81. León-González A.J., Auger C., Schini-Kerth V.B. Pro-oxidant activity of polyphenols and its implication on cancer chemoprevention and chemotherapy. Biochem Pharmacol 2015;98(3):371–80. DOI: 10.1016/j.bcp.2015.07.017
82. Kim H.-S., Quon M.J., Kim J. New insights into the mechanisms of polyphenols beyond antioxidant properties; lessons from the green tea polyphenol, epigallocatechin 3-gallate. Redox Biol 2014;2:187–95. DOI: 10.1016/j.redox.2013.12.022
83. He F., Antonucci L., Karin M. NRF2 as a regulator of cell metabolism and inflammation in cancer. Carcinogenesis 2020;41(4):405–16. DOI: 10.1093/carcin/bgaa039
84. Tanigawa S., Fujii M., Hou D. Action of Nrf2 and Keap1 in ARE-mediated NQO1 expression by quercetin. Free Radic Biol Med 2007;42(11):1690–703. DOI: 10.1016/j.freeradbiomed.2007.02.017
85. Feng R.-B., Wang Y., He C. et al. Gallic acid, a natural polyphenol, protects against tert-butyl hydroperoxide-induced hepatotoxicity by activating ERK-Nrf2-Keap1-mediated antioxidative response. Food Chem Toxicol 2018;119:479–88. DOI: 10.1016/j.fct.2017.10.033
86. Yang M., Jiang Z., Li C. et al. Apigenin prevents metabolic syndrome in high-fructose diet-fed mice by Keap1-Nrf2 pathway. Biomed Pharmacother 2018;105:1283–90. DOI: 10.1016/j.biopha.2018.06.108
87. Lin Y.-L., Tsai S.-H., Lin-Shiau S.-Y. et al. Theaflavin-3,3’-digallate from black tea blocks the nitric oxide synthase by down-regulating the activation of NF-κB in macrophages. Eur J Pharmacol 1999;367(2–3):379–88. DOI: 10.1016/S0014-2999(98)00953-4
88. Lin Y.-L., Lin J.-K. (−)-Epigallocatechin-3-gallate blocks the Induction of nitric oxide synthase by down-regulating lipopolysaccharide-induced activity of transcription factor nuclear factor-κB. Mol Pharmacol 1997;52(3):465–72. DOI: 10.1124/mol.52.3.465
89. Ursini F., Maiorino M., Forman H.J. Redox homeostasis: the Golden Mean of healthy living. Redox Biol 2016;8:205–15. DOI: 10.1016/j.redox.2016.01.010
90. Forman H.J., Davies K.J.A., Ursini F. How do nutritional antioxidants really work: nucleophilic tone and para-hormesis versus free radical scavenging in vivo. Free Radic Biol Med 2014;66:24–35. DOI: 10.1016/j.freeradbiomed.2013.05.045
91. Watson J. Oxidants, antioxidants and the current incurability of metastatic cancers. Open Biol 2013;3(1):120144. DOI: 10.1098/rsob.120144
92. Wang J., Yi J. Cancer cell killing via ROS: to increase or decrease, that is the question. Cancer Biol Ther 2008;7(12):1875–84. DOI: 10.4161/cbt.7.12.7067
93. Trachootham D., Alexandre J., Huang P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 2009;8(7):579–91. DOI: 10.1038/nrd2803
94. Russo G.L., Tedesco I., Spagnuolo C., Russo M. Antioxidant polyphenols in cancer treatment: friend, foe or foil? Semin Cancer Biol 2017;46:1–13. DOI: 10.1016/j.semcancer.2017.05.005
95. Mohos V., Fliszár-Nyúl E., Lemli B. et al. Testing the pharmacokinetic interactions of 24 colonic flavonoid metabolites with human serum albumin and cytochrome P450 enzymes. Biomolecules 2020;10(3):409. DOI: 10.3390/biom10030409
96. Fatima A., Khan M.S., Ahmad Md.W. Therapeutic potential of equol: a comprehensive review. Curr Pharm Des 2020;26(45):5837–43. DOI: 10.2174/1381612826999201117122915
97. Rogovskii V.S. The therapeutic potential of urolithin a for cancer treatment and prevention. Curr Cancer Drug Targets 2022;22(9):717–24. DOI: 10.2174/1568009622666220602125343
98. Zhang J., Ren L., Yu M. et al. S-equol inhibits proliferation and promotes apoptosis of human breast cancer MCF-7 cells via regulating miR-10a-5p and PI3K/AKT pathway. Arch Biochem Biophys 2019;672:108064. DOI: 10.1016/j.abb.2019.108064
99. Zou Y., Wang Y., Cai Y., Ma D. Effects of equol on proliferation of colorectal cancer HCT-15 cell. Wei Sheng Yan Jiu 2019;48(5):803–6. (In Chinese).
100. Brown N.M., Belles C.A., Lindley S.L. et al. The chemopreventive action of equol enantiomers in a chemically induced animal model of breast cancer. Carcinogenesis 2010;31(5):886–93. DOI: 10.1093/carcin/bgq025
101. Yu X., Zou Y.Q., Wang Y. et al. Equol and its enantiomers inhibited urethane-induced lung cancer in mice. Beijing Da Xue Xue Bao 2022;54(2):244–8. (In Chinese).
102. Mohammed Saleem Y.I., Albassam H., Selim M. Urolithin A induces prostate cancer cell death in p53-dependent and in p53-independent manner. Eur J Nutr 2020;59(4):1607–18. DOI: 10.1007/s00394-019-02016-2
103. El-Wetidy M.S., Ahmad R., Rady I. et al. Urolithin A induces cell cycle arrest and apoptosis by inhibiting Bcl-2, increasing p53-p21 proteins and reactive oxygen species production in colorectal cancer cells. Cell Stress Chaperones 2021;26(3):473–93. DOI: 10.1007/s12192-020-01189-8
104. Liu C.-F., Li X.-L., Zhang Z.-L. et al. Antiaging effects of Urolithin A on replicative senescent human skin fibroblasts. Rejuvenation Res 2019;22(3):191–200. DOI: 10.1089/rej.2018.2066
105. Djedjibegovic J., Marjanovic A., Panieri E., Saso L. Ellagic acid-derived urolithins as modulators of oxidative stress. Oxid Med Cell Longev 2020;2020:5194508. DOI: 10.1155/2020/5194508
106. Al-Harbi S.A., Abdulrahman A.O., Zamzami M.A., Khan M.I. Urolithins: the Gut based polyphenol metabolites of ellagitannins in cancer prevention, a review. Front Nutr 2021;8:647582. DOI: 10.3389/fnut.2021.647582
107. Dey P., Ray Chaudhuri S. Cancer-associated microbiota: from mechanisms of disease causation to microbiota-centric anti-cancer approaches. Biology 2022;11(5):757. DOI: 10.3390/biology11050757
108. Daglia M. Polyphenols as antimicrobial agents. Curr Opin Biotechnol 2012;23(2):174–81. DOI: 10.1016/j.copbio.2011.08.007
109. Bittencourt M.L.F., Rodrigues R.P., Kitagawa R.R., Gonçalves R.C.R. The gastroprotective potential of silibinin against Helicobacter pylori infection and gastric tumor cells. Life Sci 2020;256:117977. DOI: 10.1016/j.lfs.2020.117977
110. Chen M., Su C., Yang J. et al. Baicalin, baicalein, and Lactobacillus rhamnosus JB3 alleviated Helicobacter pylori infections in vitro and in vivo. J Food Sci 2020;83(12):3118–25. DOI: 10.1111/1750-3841.14372
111. Andrade F.O., Liu F., Zhang X. et al. Genistein reduces the risk of local mammary cancer recurrence and ameliorates alterations in the gut microbiota in the offspring of obese dams. Nutrients 2021;13(1):201. DOI: 10.3390/nu13010201
112. Di Lorenzo C., Colombo F., Biella S. et al. Polyphenols and human health: the role of bioavailability. Nutrients 2021;13(1):273. DOI: 10.3390/nu13010273
113. Yang B., Dong Y., Wang F., Zhang Y. Nanoformulations to enhance the bioavailability and physiological functions of polyphenols. Molecules 2020;25(20):4613. DOI: 10.3390/molecules25204613
114. Si W., Zhang Y., Li X. et al. Understanding the functional activity of polyphenols using omics-based approaches. Nutrients 2021;13(11):3953. DOI: 10.3390/nu13113953
Рецензия
Для цитирования:
Любителев А.В., Сивкина А.Л., Власова О.А., Белицкий Г.A., Студитский В.М. Механизмы действия растительных полифенолов на инициацию канцерогенеза. Успехи молекулярной онкологии. 2023;10(2):30-41. https://doi.org/10.17650/2313-805X-2023-10-2-30-41
For citation:
Lyubitelev A.V., Sivkina A.L., Vlasova O.A., Belitsky G.A., Studitsky V.M. Mechanisms of action of plant polyphenols on the initiation of carcinogenesis. Advances in Molecular Oncology. 2023;10(2):30-41. (In Russ.) https://doi.org/10.17650/2313-805X-2023-10-2-30-41