Mechanisms of action of plant polyphenols on the initiation of carcinogenesis
- Authors: Lyubitelev A.V.1, Sivkina A.L.1, Vlasova O.A.2, Belitsky G.A.2, Studitsky V.M.1,3
-
Affiliations:
- Lomonosov Moscow State University
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
- Fox Chase Cancer Center
- Issue: Vol 10, No 2 (2023)
- Pages: 30-41
- Section: REVIEW
- Published: 10.07.2023
- URL: https://umo.abvpress.ru/jour/article/view/539
- DOI: https://doi.org/10.17650/2313-805X-2023-10-2-30-41
- ID: 539
Cite item
Full Text
Abstract
Genetic apparatus of human cells is constantly affected by a broad spectrum of mutagenic factors, both exogenous and endogenous. Genetic and epigenetic disorders, which emerge as a result of this influence, become the main cause of the majority of malignant neoplasias. Several different approaches were proposed to prevent these disorders, including the suppression of the activity of mutagenic factors by treatment with certain chemical compounds. Plant polyphenols are promising candidates for the development of chemopreventive drugs, as they exert the ability to regulate the metabolic activation of procarcinogens and modulate the cellular oxidative stress. In the present review, classification of plant phenolic compounds and their interactions with biological macromolecules are described, along with the molecular mechanisms of their influence on the enzymes and regulatory pathways of phase I xenobiotic metabolism, and the prevention of oxidative stress. Interactions between natural polyphenols and patient’s microbiota is also described.
About the authors
A. V. Lyubitelev
Lomonosov Moscow State University
Author for correspondence.
Email: varanus.storri@gmail.com
ORCID iD: 0000-0003-0768-9309
Alexander V. Lyubitelev - Department of Bioengineering of Lomonosov Moscow State University.
Bld. 12, 1 Leninskie Gory, Moscow 119234
Russian FederationA. L. Sivkina
Lomonosov Moscow State University
Email: fake@neicon.ru
ORCID iD: 0000-0002-4681-0178
Department of Bioengineering of Lomonosov Moscow State University.
Bld. 12, 1 Leninskie Gory, Moscow 119234
Russian FederationO. A. Vlasova
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Email: fake@neicon.ru
ORCID iD: 0000-0002-1498-849X
24 Kashirskoe Shosse, Moscow 115522
Russian FederationG. A. Belitsky
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Email: fake@neicon.ru
ORCID iD: 0000-0002-3167-7204
24 Kashirskoe Shosse, Moscow 115522
Russian FederationV. M. Studitsky
Lomonosov Moscow State University; Fox Chase Cancer Center
Email: fake@neicon.ru
ORCID iD: 0000-0002-7389-7993
Department of Bioengineering of Lomonosov Moscow State University
Bld. 12, 1 Leninskie Gory, Moscow 119234; 333 Cottman Ave, Philadelphia 19111, Pennsylvania, USA
Russian FederationReferences
- Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discov 2022;12(1):31–46. doi: 10.1158/2159-8290.CD-21-1059
- Barnes J.L., Zubair M., John K. et al. Carcinogens and DNA damage. Biochem Soc Trans 2018;46(5):1213–24. doi: 10.1042/BST20180519
- Santivasi W.L., Xia F. Ionizing radiation-induced DNA damage, response, and repair. Antioxid Redox Signal 2014;21:251–9. doi: 10.1089/ars.2013.5668
- Smith A.J., Smith L.A. Viral carcinogenesis. In: Progress in molecular biology and translational science. Elsevier, 2016. Pp. 121–168.
- Tomasetti C., Li L., Vogelstein B. Stem cell divisions, somatic mutations, cancer etiology, and cancer prevention. Science 2017;355(6331):1330–4. doi: 10.1126/science.aaf9011
- Mucci L.A., Hjelmborg J.B., Harris J.R. et al. Familial risk and heritability of cancer among twins in nordic countries. JAMA 2016;315(1):68–76. doi: 10.1001/jama.2015.17703
- Song M., Vogelstein B., Giovannucci E.L. et al. Cancer prevention: molecular and epidemiologic consensus. Science 2018;361(6409):1317–8. doi: 10.1126/science.aau3830
- Maksimova V., Shalginskikh N., Vlasova O. et al. HeLa TI cell-based assay as a new approach to screen for chemicals able to reactivate the expression of epigenetically silenced genes. PLoS One 2021;16(6):e0252504. doi: 10.1371/journal.pone.0252504
- Kirsanov K., Fetisov T., Lesovaya E.A. et al. Prevention of colorectal carcinogenesis by DNA-binding small-molecule curaxin CBL0137 involves suppression of wnt signaling. Cancer Prev Res (Phila Pa) 2020;13(1):53–64. doi: 10.1158/1940-6207.CAPR-19-0198
- Erb M., Kliebenstein D.J. Plant Secondary metabolites as defenses, regulators, and primary metabolites: the blurred functional trichotomy. Plant Physiol 2020;184(1):39–52. doi: 10.1104/pp.20.00433
- Valdés-Jiménez A., Peña-Varas C., Borrego-Muñoz P. et al. PSC-db: a structured and searchable 3d-database for plant secondary compounds. Molecules 2021;26(4):1124. doi: 10.3390/molecules26041124
- War A.R., Paulraj M.G., Ahmad T. et al. Mechanisms of plant defense against insect herbivores. Plant Signal Behav 2012;7(10):1306–20. doi: 10.4161/psb.21663
- Cheynier V., Comte G., Davies K.M. et al. Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol Biochem PPB 2013;72:1–20. doi: 10.1016/j.plaphy.2013.05.009
- El Gharras H. Polyphenols: food sources, properties and applications – a review: nutraceutical polyphenols. Int J Food Sci Technol 2009;44:2512–8. doi: 10.1111/j.1365-2621.2009.02077.x
- Fruit and vegetable phytochemicals. Ed. by L.A. De la Rosa, E. Alvarez-Parrilla, G.A. Gonzlez-Aguilar. Wiley-Blackwell, Oxford, UK, 2009.
- Khoddami A., Wilkes M., Roberts T. Techniques for analysis of plant phenolic compounds. Molecules 2013;18(2):2328–75. doi: 10.3390/molecules18022328
- Singla R.K., Dubey A.K., Garg A. et al. Natural polyphenols: chemical classification, definition of classes, subcategories, and structures. J AOAC Int 2019;102(5):1397–400. doi: 10.5740/jaoacint.19-0133
- Soto-Vaca A., Gutierrez A., Losso J.N. et al. Evolution of phenolic compounds from color and flavor problems to health benefits. J Agric Food Chem 2012;60(27):6658–77. doi: 10.1021/jf300861c
- Corcoran M.P., McKay D.L., Blumberg J.B. Flavonoid basics: chemistry, sources, mechanisms of action, and safety. J Nutr Gerontol Geriatr 2012;31(3):176–89. doi: 10.1080/21551197.2012.698219
- Pérez-Jiménez J., Neveu V., Vos F., Scalbert A. Identification of the 100 richest dietary sources of polyphenols: an application of the Phenol-Explorer database. Eur J Clin Nutr 2010;64:S112–20. doi: 10.1038/ejcn.2010.221
- Van Wyk B.-E., Wink M. Medicinal plants of the world: an illustrated scientific guide to important medicinal plants and their uses. 1st edn. Timber Press, Portland, 2004.
- Pallauf K., Giller K., Huebbe P., Rimbach G. Nutrition and healthy ageing: calorie restriction or polyphenol-rich “MediterrAsian” diet? Oxid Med Cell Longev 2013;2013:707421. doi: 10.1155/2013/707421
- Grosso G., Godos J., Lamuela-Raventos R. et al. A comprehensive meta-analysis on dietary flavonoid and lignan intake and cancer risk: level of evidence and limitations. Mol Nutr Food Res 2017;61(4). doi: 10.1002/mnfr.201600930
- Leri M., Scuto M., Ontario M.L. et al. Healthy effects of plant polyphenols: molecular mechanisms. Int J Mol Sci 2020;21(4):1250. doi: 10.3390/ijms21041250
- Kirsanov K.I., Vlasova O.A., Fetisov T.I. et al. Influence of DNA-binding compounds with cancer preventive activity on the mechanisms of gene expression regulation. Uspekhi molekulyarnoy onkologii = Advances in Molecular Oncology 2018;5(4):41–63. (In Russ.). doi: 10.17650/2313-805X-2018-5-4-41-63
- Patra S., Pradhan B., Nayak R. et al. Dietary polyphenols in chemoprevention and synergistic effect in cancer: clinical evidences and molecular mechanisms of action. Phytomedicine 2021;90:153554. doi: 10.1016/j.phymed.2021.153554
- Hazafa A., Rehman K.-U., Jahan N., Jabeen Z. The role of polyphenol (flavonoids) compounds in the treatment of cancer cells. Nutr Cancer 2020;72(3):386–97. doi: 10.1080/01635581.2019.1637006
- Duo J., Ying G.-G., Wang G.-W., Zhang L. Quercetin inhibits human breast cancer cell proliferation and induces apoptosis via Bcl-2 and Bax regulation. Mol Med Rep 2012;5(6):1453–6. doi: 10.3892/mmr.2012.845
- Adhami V.M., Malik A., Zaman N. et al. Combined inhibitory effects of green tea polyphenols and selective cyclooxygenase-2 inhibitors on the growth of human prostate cancer cells both in vitro and in vivo. Clin Cancer Res Off J Am Assoc Cancer Res 2007;13(5):1611–9. doi: 10.1158/1078-0432.CCR-06-2269
- Chua C.C., Hamdy R.C., Chua B.H. Mechanism of transforming growth factor-beta1-induced expression of vascular endothelial growth factor in murine osteoblastic MC3T3-E1 cells. Biochim Biophys Acta 2000;1497(1):69–76. doi: 10.1016/s0167-4889(00)00040-9
- Chadalapaka G., Jutooru I., Chintharlapalli S. et al. Curcumin decreases specificity protein expression in bladder cancer cells. Cancer Res 2008;68(13):5345–54. doi: 10.1158/0008-5472.CAN-07-6805
- Zhou Y., Zheng J., Li Y. et al. Natural polyphenols for prevention and treatment of cancer. Nutrients 2016;8(8):515. doi: 10.3390/nu8080515
- Choudhari A.S., Mandave P.C., Deshpande M. et al. Phytochemicals in cancer treatment: from preclinical studies to clinical practice. Front Pharmacol 2019;10:1614. doi: 10.3389/fphar.2019.01614
- Bisol Â., Campos P.S., Lamers M.L. Flavonoids as anticancer therapies: а systematic review of clinical trials. Phytother Res 2020;34(3):568–82. doi: 10.1002/ptr.6551
- Nguyen M.M., Ahmann F.R., Nagle R.B. et al. Randomized, double-blind, placebo-controlled trial of polyphenon E in prostate cancer patients before prostatectomy: evaluation of potential chemopreventive activities. Cancer Prev Res Phila Pa 2012;5(2):290–8. doi: 10.1158/1940-6207.CAPR-11-0306
- Thomas R., Williams M., Sharma H. et al. A double-blind, placebo-controlled randomised trial evaluating the effect of a polyphenolrich whole food supplement on PSA progression in men with prostate cancer – the UK NCRN Pomi-T study. Prostate Cancer Prostatic Dis 2014;7(2):180–6. doi: 10.1038/pcan.2014.6
- Wink M. Modes of action of herbal medicines and plant secondary metabolites. Medicines 2015;2(3):251–86. doi: 10.3390/medicines2030251
- Tachibana H., Koga K., Fujimura Y., Yamada K. A receptor for green tea polyphenol EGCG. Nat Struct Mol Biol 2004;11(4): 380–1. doi: 10.1038/nsmb743
- Kuzuhara T., Suganuma M., Fujiki H. Green tea catechin as a chemical chaperone in cancer prevention. Cancer Lett 2008;261(1):12–20. doi: 10.1016/j.canlet.2007.10.037
- Fujimura Y., Tachibana H., Yamada K. Lipid raft-associated catechin suppresses the FcϵRI expression by inhibiting phosphorylation of the extracellular signal-regulated kinase1/2. FEBS Lett 2004;556(1–3):204–10. doi: 10.1016/S0014-5793(03)01432-7
- N’soukpoé-Kossi C.N., Bourassa P., Mandeville J.S. et al. Structural modeling for DNA binding to antioxidants resveratrol, genistein and curcumin. J Photochem Photobiol B 2015;151:69–75. doi: 10.1016/j.jphotobiol.2015.07.007
- Zenkov R.G., Kirsanov K.I., Ogloblina A.M. et al. Effects of G-Quadruplex-binding plant secondary metabolites on c-MYC expression. Int J Mol Sci 2022;23(16):9209. doi: 10.3390/ijms23169209
- Omiecinski C.J., Vanden Heuvel J.P., Perdew G.H., Peters J.M. Xenobiotic metabolism, disposition, and regulation by receptors: from biochemical phenomenon to predictors of major toxicities. Toxicol Sci 2011;120(Suppl.1):S49–75. doi: 10.1093/toxsci/kfq338
- Denison M.S., Soshilov A.A., He G. et al. Exactly the same but different: promiscuity and diversity in the molecular mechanisms of action of the aryl hydrocarbon (dioxin) receptor. Toxicol Sci 2011;124(1):1–22. doi: 10.1093/toxsci/kfr218
- Xue Z., Li D., Yu W. et al. Mechanisms and therapeutic prospects of polyphenols as modulators of the aryl hydrocarbon receptor. Food Funct 2017;8(4):1414–37. doi: 10.1039/C6FO01810F
- Ciolino H.P., Daschner P.J., Wang T.T.Y., Yeh G.C. Effect of curcumin on the aryl hydrocarbon receptor and cytochrome P450 1A1 in MCF-7 human breast carcinoma cells. Biochem Pharmacol 1998;56(2):197–206. doi: 10.1016/S0006-2952(98)00143-9
- Ciolino H.P., Daschner P.J., Yeh G.C. Dietary flavonols quercetin and kaempferol are ligands of the aryl hydrocarbon receptor that affect CYP1A1 transcription differentially. Biochem J 1999;340(Pt. 3):715–22.
- Perdew G.H., Hollingshead B.D., Dinatale B.C. et al. Estrogen receptor expression is required for low-dose resveratrol-mediated repression of aryl hydrocarbon receptor activity. J Pharmacol Exp Ther 2010;335(2):273–83. doi: 10.1124/jpet.110.170654
- Fukuda I., Mukai R., Kawase M. et al. Interaction between the aryl hydrocarbon receptor and its antagonists, flavonoids. Biochem Biophys Res Commun 2007;359(3):822–7. doi: 10.1016/j.bbrc.2007.05.199
- Jin U.-H., Park H., Li X. et al. Structure-dependent modulation of aryl hydrocarbon receptor-mediated activities by flavonoids. Toxicol Sci 2018;164(1):205–17. doi: 10.1093/toxsci/kfy075
- Kaur M., Badhan R.K.S. Phytochemical mediated-modulation of the expression and transporter function of breast cancer resistance protein at the blood-brain barrier: an in-vitro study. Brain Res 2017;1654(Pt. A):9–23. doi: 10.1016/j.brainres.2016.10.020
- Goya-Jorge E., Giner R.M., Sylla-Iyarreta Veitía M. et al. Predictive modeling of aryl hydrocarbon receptor (AhR) agonism. Chemosphere 2020;256:127068. doi: 10.1016/j.chemosphere.2020.127068
- Goya-Jorge E., Jorge Rodríguez M.E., Veitía M.S.-I., Giner R.M. Plant occurring flavonoids as modulators of the aryl hydrocarbon receptor. Molecules 2021;26(8):2315. doi: 10.3390/molecules26082315
- Mukai R., Shirai Y., Saito N. et al. Suppression mechanisms of flavonoids on aryl hydrocarbon receptor-mediated signal transduction. Arch Biochem Biophys 2010;501(1):134–41. doi: 10.1016/j.abb.2010.05.002
- Nishiumi S., Yoshida K.-I., Ashida H. Curcumin suppresses the transformation of an aryl hydrocarbon receptor through its phosphorylation. Arch Biochem Biophys 2007;466(2):267–73. doi: 10.1016/j.abb.2007.08.007
- Quadri S.A., Qadri A.N., Hahn M.E. et al. The bioflavonoid galangin blocks aryl hydrocarbon receptor activation and polycyclic aromatic hydrocarbon-induced pre-B cell apoptosis. Mol Pharmacol 2000;58(3):515–25. doi: 10.1124/mol.58.3.515
- Palermo C.M., Westlake C.A., Gasiewicz T.A. Epigallocatechin gallate inhibits aryl hydrocarbon receptor gene transcription through an indirect mechanism involving binding to a 90 kDa heat shock protein. Biochemistry 2005;44(13):5041–52. doi: 10.1021/bi047433p
- Ciolino H.P., Daschner P.J., Yeh G.C. Resveratrol inhibits transcription of CYP1A1 in vitro by preventing activation of the aryl hydrocarbon receptor. Cancer Res 1998;58(24):5707–12.
- Froyen E.B., Steinberg F.M. Genistein decreases basal hepatic cytochrome P450 1A1 protein expression and activity in Swiss Webster mice. Nutr Res 2016;36(5):430–9. doi: 10.1016/j.nutres.2016.01.001
- Macpherson L., Matthews J. Inhibition of aryl hydrocarbon receptor-dependent transcription by resveratrol or kaempferol is independent of estrogen receptor α expression in human breast cancer cells. Cancer Lett 2010;299(2):119–29. doi: 10.1016/j.canlet.2010.08.010
- Manikandan P., Nagini S. Cytochrome P450 structure, function and clinical significance: a review. Curr Drug Targets 2018;19(1):38–54. doi: 10.2174/1389450118666170125144557
- Wahlang B., Falkner K.C., Cave M.C., Prough R.A. Role of cytochrome P450 monooxygenase in carcinogen and chemotherapeutic drug metabolism. In: Advances in Pharmacology. Elsevier, 2015. Pp. 1–33.
- Shimada T., Tanaka K., Takenaka S. et al. Structure-function relationships of inhibition of human cytochromes P450 1A1, 1A2, 1B1, 2C9, and 3A4 by 33 flavonoid derivatives. Chem Res Toxicol 2010;23(12):1921–35. doi: 10.1021/tx100286d
- Kimura Y., Ito H., Ohnishi R., Hatano T. Inhibitory effects of polyphenols on human cytochrome P450 3A4 and 2C9 activity. Food Chem Toxicol 2020;48(1):429–35. doi: 10.1016/j.fct.2009.10.041
- De Bont R. Endogenous DNA damage in humans: a review of quantitative data. Mutagenesis 2004;19(3):169–85. doi: 10.1093/mutage/geh025
- Jomova K., Valko M. Advances in metal-induced oxidative stress and human disease. Toxicology 2011;283(2-3):65–87. doi: 10.1016/j.tox.2011.03.001
- Pereira C., Grácio D., Teixeira J.P., Magro F. Oxidative stress and DNA damage: implications in inflammatory bowel disease. Inflamm Bowel Dis 2015;21(10):2403–17. doi: 10.1097/MIB.0000000000000506
- Gebicki J.M. Oxidative stress, free radicals and protein peroxides. Arch Biochem Biophys 2016;595:33–9. doi: 10.1016/j.abb.2015.10.021
- Paulsen C.E., Carroll K.S. Cysteine-mediated redox signaling: chemistry, biology, and tools for discovery. Chem Rev 2013;113(7):4633–79. doi: 10.1021/cr300163e
- Chen J.-W., Zhu Z.-Q., Hu T.-X., Zhu D.-Y. Structure-activity relationship of natural flavonoids in hydroxyl radical-scavenging effects. Acta Pharmacol Sin 2002;23(7):667–72.
- Olszowy M. What is responsible for antioxidant properties of polyphenolic compounds from plants? Plant Physiol Biochem 2019;144:135–43. doi: 10.1016/j.plaphy.2019.09.039
- Nakagawa T., Yokozawa T. Direct scavenging of nitric oxide and superoxide by green tea. Food Chem Toxicol 2002;40(12):1745–50. doi: 10.1016/S0278-6915(02)00169-2
- Shanmugam T., Selvaraj M., Poomalai S. Epigallocatechin gallate potentially abrogates fluoride induced lung oxidative stress, inflammation via Nrf2/Keap1 signaling pathway in rats: an in-vivo and in-silico study. Int Immunopharmacol 2016;39:128–39. doi: 10.1016/j.intimp.2016.07.022
- Giftson J.S., Jayanthi S., Nalini N. Chemopreventive efficacy of gallic acid, an antioxidant and anticarcinogenic polyphenol, against 1,2-dimethyl hydrazine induced rat colon carcinogenesis. Invest New Drugs 2010;28:251–259. doi: 10.1007/s10637-009-9241-9
- Sharmila G., Athirai T., Kiruthiga B. et al. Chemopreventive effect of quercetin in MNU and testosterone induced prostate cancer of sprague-dawley rats. Nutr Cancer 2014;66:38–46. doi: 10.1080/01635581.2014.847967
- Henning S.M., Niu Y., Lee N.H. et al. Bioavailability and antioxidant activity of tea flavanols after consumption of green tea, black tea, or a green tea extract supplement. Am J Clin Nutr 2004;80(6):1558–64. doi: 10.1093/ajcn/80.6.1558
- Fallah A.A., Sarmast E., Jafari T. Effect of dietary anthocyanins on biomarkers of oxidative stress and antioxidative capacity: a systematic review and meta-analysis of randomized controlled trials. J Funct Foods 2020;68:103912. doi: 10.1016/j.jff.2020.103912
- Mira L., Fernandez M.T., Santos M. et al. Interactions of flavonoids with iron and copper ions: a mechanism for their antioxidant activity. Free Radic Res 2002;6:1199–208. doi: 10.1080/1071576021000016463
- Adjimani J.P., Asare P. Antioxidant and free radical scavenging activity of iron chelators. Toxicol Rep 2015;2:721–8. doi: 10.1016/j.toxrep.2015.04.005
- McCubrey J.A., Lertpiriyapong K., Steelman L.S. et al. Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs. Aging 2017;9(6):1477–536. doi: 10.18632/aging.101250
- León-González A.J., Auger C., Schini-Kerth V.B. Pro-oxidant activity of polyphenols and its implication on cancer chemoprevention and chemotherapy. Biochem Pharmacol 2015;98(3):371–80. doi: 10.1016/j.bcp.2015.07.017
- Kim H.-S., Quon M.J., Kim J. New insights into the mechanisms of polyphenols beyond antioxidant properties; lessons from the green tea polyphenol, epigallocatechin 3-gallate. Redox Biol 2014;2:187–95. doi: 10.1016/j.redox.2013.12.022
- He F., Antonucci L., Karin M. NRF2 as a regulator of cell metabolism and inflammation in cancer. Carcinogenesis 2020;41(4):405–16. doi: 10.1093/carcin/bgaa039
- Tanigawa S., Fujii M., Hou D. Action of Nrf2 and Keap1 in ARE-mediated NQO1 expression by quercetin. Free Radic Biol Med 2007;42(11):1690–703. doi: 10.1016/j.freeradbiomed.2007.02.017
- Feng R.-B., Wang Y., He C. et al. Gallic acid, a natural polyphenol, protects against tert-butyl hydroperoxide-induced hepatotoxicity by activating ERK-Nrf2-Keap1-mediated antioxidative response. Food Chem Toxicol 2018;119:479–88. doi: 10.1016/j.fct.2017.10.033
- Yang M., Jiang Z., Li C. et al. Apigenin prevents metabolic syndrome in high-fructose diet-fed mice by Keap1-Nrf2 pathway. Biomed Pharmacother 2018;105:1283–90. doi: 10.1016/j.biopha.2018.06.108
- Lin Y.-L., Tsai S.-H., Lin-Shiau S.-Y. et al. Theaflavin-3,3’-digallate from black tea blocks the nitric oxide synthase by down-regulating the activation of NF-κB in macrophages. Eur J Pharmacol 1999;367(2–3):379–88. doi: 10.1016/S0014-2999(98)00953-4
- Lin Y.-L., Lin J.-K. (−)-Epigallocatechin-3-gallate blocks the Induction of nitric oxide synthase by down-regulating lipopolysaccharide-induced activity of transcription factor nuclear factor-κB. Mol Pharmacol 1997;52(3):465–72. doi: 10.1124/mol.52.3.465
- Ursini F., Maiorino M., Forman H.J. Redox homeostasis: the Golden Mean of healthy living. Redox Biol 2016;8:205–15. doi: 10.1016/j.redox.2016.01.010
- Forman H.J., Davies K.J.A., Ursini F. How do nutritional antioxidants really work: nucleophilic tone and para-hormesis versus free radical scavenging in vivo. Free Radic Biol Med 2014;66:24–35. doi: 10.1016/j.freeradbiomed.2013.05.045
- Watson J. Oxidants, antioxidants and the current incurability of metastatic cancers. Open Biol 2013;3(1):120144. doi: 10.1098/rsob.120144
- Wang J., Yi J. Cancer cell killing via ROS: to increase or decrease, that is the question. Cancer Biol Ther 2008;7(12):1875–84. doi: 10.4161/cbt.7.12.7067
- Trachootham D., Alexandre J., Huang P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 2009;8(7):579–91. doi: 10.1038/nrd2803
- Russo G.L., Tedesco I., Spagnuolo C., Russo M. Antioxidant polyphenols in cancer treatment: friend, foe or foil? Semin Cancer Biol 2017;46:1–13. doi: 10.1016/j.semcancer.2017.05.005
- Mohos V., Fliszár-Nyúl E., Lemli B. et al. Testing the pharmacokinetic interactions of 24 colonic flavonoid metabolites with human serum albumin and cytochrome P450 enzymes. Biomolecules 2020;10(3):409. doi: 10.3390/biom10030409
- Fatima A., Khan M.S., Ahmad Md.W. Therapeutic potential of equol: a comprehensive review. Curr Pharm Des 2020;26(45):5837–43. doi: 10.2174/1381612826999201117122915
- Rogovskii V.S. The therapeutic potential of urolithin a for cancer treatment and prevention. Curr Cancer Drug Targets 2022;22(9):717–24. doi: 10.2174/1568009622666220602125343
- Zhang J., Ren L., Yu M. et al. S-equol inhibits proliferation and promotes apoptosis of human breast cancer MCF-7 cells via regulating miR-10a-5p and PI3K/AKT pathway. Arch Biochem Biophys 2019;672:108064. doi: 10.1016/j.abb.2019.108064
- Zou Y., Wang Y., Cai Y., Ma D. Effects of equol on proliferation of colorectal cancer HCT-15 cell. Wei Sheng Yan Jiu 2019;48(5):803–6. (In Chinese).
- Brown N.M., Belles C.A., Lindley S.L. et al. The chemopreventive action of equol enantiomers in a chemically induced animal model of breast cancer. Carcinogenesis 2010;31(5):886–93. doi: 10.1093/carcin/bgq025
- Yu X., Zou Y.Q., Wang Y. et al. Equol and its enantiomers inhibited urethane-induced lung cancer in mice. Beijing Da Xue Xue Bao 2022;54(2):244–8. (In Chinese).
- Mohammed Saleem Y.I., Albassam H., Selim M. Urolithin A induces prostate cancer cell death in p53-dependent and in p53-independent manner. Eur J Nutr 2020;59(4):1607–18. doi: 10.1007/s00394-019-02016-2
- El-Wetidy M.S., Ahmad R., Rady I. et al. Urolithin A induces cell cycle arrest and apoptosis by inhibiting Bcl-2, increasing p53-p21 proteins and reactive oxygen species production in colorectal cancer cells. Cell Stress Chaperones 2021;26(3):473–93. doi: 10.1007/s12192-020-01189-8
- Liu C.-F., Li X.-L., Zhang Z.-L. et al. Antiaging effects of Urolithin A on replicative senescent human skin fibroblasts. Rejuvenation Res 2019;22(3):191–200. doi: 10.1089/rej.2018.2066
- Djedjibegovic J., Marjanovic A., Panieri E., Saso L. Ellagic acid-derived urolithins as modulators of oxidative stress. Oxid Med Cell Longev 2020;2020:5194508. doi: 10.1155/2020/5194508
- Al-Harbi S.A., Abdulrahman A.O., Zamzami M.A., Khan M.I. Urolithins: the Gut based polyphenol metabolites of ellagitannins in cancer prevention, a review. Front Nutr 2021;8:647582. doi: 10.3389/fnut.2021.647582
- Dey P., Ray Chaudhuri S. Cancer-associated microbiota: from mechanisms of disease causation to microbiota-centric anti-cancer approaches. Biology 2022;11(5):757. doi: 10.3390/biology11050757
- Daglia M. Polyphenols as antimicrobial agents. Curr Opin Biotechnol 2012;23(2):174–81. doi: 10.1016/j.copbio.2011.08.007
- Bittencourt M.L.F., Rodrigues R.P., Kitagawa R.R., Gonçalves R.C.R. The gastroprotective potential of silibinin against Helicobacter pylori infection and gastric tumor cells. Life Sci 2020;256:117977. doi: 10.1016/j.lfs.2020.117977
- Chen M., Su C., Yang J. et al. Baicalin, baicalein, and Lactobacillus rhamnosus JB3 alleviated Helicobacter pylori infections in vitro and in vivo. J Food Sci 2020;83(12):3118–25. doi: 10.1111/1750-3841.14372
- Andrade F.O., Liu F., Zhang X. et al. Genistein reduces the risk of local mammary cancer recurrence and ameliorates alterations in the gut microbiota in the offspring of obese dams. Nutrients 2021;13(1):201. doi: 10.3390/nu13010201
- Di Lorenzo C., Colombo F., Biella S. et al. Polyphenols and human health: the role of bioavailability. Nutrients 2021;13(1):273. doi: 10.3390/nu13010273
- Yang B., Dong Y., Wang F., Zhang Y. Nanoformulations to enhance the bioavailability and physiological functions of polyphenols. Molecules 2020;25(20):4613. doi: 10.3390/molecules25204613
- Si W., Zhang Y., Li X. et al. Understanding the functional activity of polyphenols using omics-based approaches. Nutrients 2021;13(11):3953. doi: 10.3390/nu13113953
Supplementary files


