Preview

Успехи молекулярной онкологии

Расширенный поиск

Диагностический и терапевтический потенциал белков экзосом при раке молочной железы

https://doi.org/10.17650/2313-805X-2023-10-2-58-69

Аннотация

Экзосомы представляют собой мембранные везикулы размером 30–150 нм, которые высвобождаются клетками при слиянии мультивезикулярных телец с плазматической мембраной. Отличительной чертой этих везикул является наличие в них поверхностных тетраспанинов CD9, CD63 и CD81. Семейство малых ГТфаз Rab, включая Rab27A и Rab27B, контролирует различные этапы высвобождения экзосом, в том числе транспорт мультивезикулярных телец и слияние мультивезикулярного тельца с плазматической мембраной. На сегодняшний день принято считать экзосомы основными переносчиками информации между клетками в физиологических  условиях, таких как развитие молочной железы и лактация, и при патологии, например при раке молочной железы. в обзоре рассмотрены особенности формирования, секреции и транспорта экзосом, их состав и роль в норме и при раке молочной железы, а также перспективы использования этих везикул для разработки ранней неинвазивной диагностики и повышения эффективности противоопухолевой терапии.

Об авторах

А. А. Шефер
ФГБУН «Институт химической биологии и фундаментальной медицины Сибирского отделения Российской академии наук»; ФГАОУ ВО «Новосибирский национальный исследовательский государственный университет»
Россия

630090 Новосибирск, проспект Академика Лаврентьева, 8; 630090 Новосибирск, ул. Пирогова, 2



Я. А. Фрик
ФГАОУ ВО «Новосибирский национальный исследовательский государственный университет»
Россия

630090 Новосибирск, ул. Пирогова, 2



С. Н. Тамкович
ФГБУН «Институт химической биологии и фундаментальной медицины Сибирского отделения Российской академии наук»; ФГАОУ ВО «Новосибирский национальный исследовательский государственный университет»
Россия

Тамкович Светлана Николаевна.

630090 Новосибирск, проспект Академика Лаврентьева, 8; 630090 Новосибирск, ул. Пирогова, 2



Список литературы

1. Тамкович С.Н., Юнусова Н.В., Стахеева М.Н. Выделение и характеризация экзосом плазмы крови больных раком молочной железы и колоректальным раком. Биомедицинская химия 2017;165–9. DOI: 10.18097/PBMC20176302165

2. Шефер А.А. Экзосомы карциномы молочной железы: оценка опухолевого потенциала в системе in vivo и идентификация белков, вовлеченных в опухолевую диссеминацию. Выпускная квалификационная работа бакалавра. Новосибирск, 2022. 80 с.

3. Théry C., Witwer K.W., Aikawa E. et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 2018;7(1):1535750. DOI: 10.1080/20013078.2018.1535750

4. Kok V.C., Yu C.-C. Cancer-derived exosomes: their role in cancer biology and biomarker development. Int J Nanomedicine 2020;15:8019–36. DOI: 10.2147/IJN.S272378

5. Triantafyllou A., Gazouli M., Theodoropoulos C. et al. Exosomes in breast cancer management: where do we stand? A literature review. Biol Cell 2022;114(4):109–22. DOI: 10.1111/boc.202100081

6. Kalluri R. The biology and function of exosomes in cancer. J Clin Invest 2016;126(4):1208–15. DOI: 10.1172/JCI81135

7. Bebelman M., Smith M., Pegtel M. et al. Biogenesis and function of extracellular vesicles in cancer. Pharmacol Ther 2018;188:1–11. DOI: 10.1016/j.pharmthera.2018.02.013

8. Tenchov R., Sasso M.J., Wang X. et al. Exosomes – nature’s lipid nanoparticles, a rising star in drug delivery and diagnostics. ACS Nano 2022;16(11):17802–46. DOI: 10.1021/acsnano.2c08774

9. Huotari J., Helenius A. Endosome maturation. EMBO J 2011;30(17):3481–500. DOI: 10.1038/emboj.2011.286

10. Ren X., Hurley J.H. VHS domains of ESCRT-0 cooperate in high-avidity binding to polyubiquitinated cargo. EMBO J 2010;29(6):1045–54. DOI: 10.1038/emboj.2010.6

11. Wollert T., Yang D., Ren X. et al. The ESCRT machinery at a glance. J Cell Sci 2009;122(Pt. 13):2163–6. DOI: 10.1242/jcs.029884

12. Ostrowski M., Carmo B.N., Krumeich S. et al. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol 2010;12(1):19–30. DOI: 10.1038/ncb2000

13. Wei D., Zhan W., Gao Y. et al. RAB31 marks and controls an ESCRT-independent exosome pathway. Cell Res 2021;31(7): 157–77. DOI: 10.1038/s41422-020-00409-1

14. Trajkovich K., Hsu C., Chiantia S. et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 2008;319(5867):1244–7. DOI: 10.1126/science.1153124

15. Nonaka T., Wong D.T.W. Saliva-exosomics in cancer: molecular characterization of cancer-derived exosomes in saliva. Enzymes 2017;42:125–51. DOI: 10.1016/bs.enz.2017.08.002

16. Zhang J., Lui S.-C., Luo X.-H. et al. Exosomal long noncoding RNAs are differentially expressed in the cervicovaginal lavage samples of cervical cancer patients. J Clin Lab Anal 2016;30(6):1116–21. DOI: 10.1002/jcla.21990

17. Tamkovich S.N., Tutanov O.S., Laktionov P.P. Exosomes: generation, structure, transport, biological activity, and diagnostic application. Biochem Suppl Ser A Membr Cell Biol 2016;10(3):163–73. DOI: 10.1134/S1990747816020112

18. Григорьева А.Е., Тамкович С.Н., Еремина А.В. и др. Экзосомы слезной жидкости здоровых людей: выделение, идентификация и характеризация. Биомедицинская химия 2016;62(1):99–106.

19. Kim K.-U., Kim W.-H., Jeong C.-H. et al. More than nutrition: therapeutic potential of breast milk-derived exosomes in cancer. Int J Mol Sci 2020;21(19):7327. DOI: 10.3390/ijms21197327

20. Dong X., Bai X., Ni J. et al. Exosomes and breast cancer drug resistance. Cell Death Dis 2020;11(11):987. DOI: 10.1038/s41419-020-03189-z

21. Tamkovich S., Tutanov O., Efimenko A. et al. Blood circulating exosomes contain distinguishable fractions of free and cell-surface-associated vesicles. Curr Mol Med 2019;19(4):273–85. DOI: 10.2174/1566524019666190314120532

22. Bonifácio V.D.B. Ovarian cancer biomarkers: moving forward in early detection. Adv Exp Med Biol 2020;1219:355–63. DOI: 10.1007/978-3-030-34025-4_18

23. Kuang Y., Peng C., Dong Y. et al. NADH dehydrogenase subunit 1/4/5 promotes survival of acute myeloid leukemia by mediating specific oxidative phosphorylation. Mol Med Rep 2022;25(6):195. DOI: 10.3892/mmr.2022.12711

24. Justo B.L., Jasiulionis M.G. Characteristics of TIMP1, CD63, and β1-integrin and the functional impact of their interaction in cancer. Int J Mol Sci 2021;22(17):9319. DOI: 10.3390/ijms22179319

25. Qin Y., Shembrey C., Smith J. et al. Laminin 521 enhances self-renewal via STAT3 activation and promotes tumor progression in colorectal cancer. Cancer Letters 2020;476:161–9. DOI: 10.1016/j.canlet.2020.02.026

26. Zhang T., Sun L., Hao Y. et al. ENO1 suppresses cancer cell ferroptosis by degrading the mRNA of iron regulatory protein 1. Nat Cancer 2022;3(1):75–89. DOI: 10.1038/s43018-021-00299-1

27. Hong J., Guo F., Lu S.-Y. et al. F. nucleatum targets lncRNA ENO1-IT1 to promote glycolysis and oncogenesis in colorectal cancer. Gut 2021;70(11):2123–37. DOI: 10.1136/gutjnl-2020-322780

28. Li H.-J., Ke F.-Y., Lin C.-C. et al. ENO1 promotes lung cancer metastasis via HGFR and WNT signaling-driven epithelial-to-mesenchymal transition. Cancer Res 2021;81(15):4094–09. DOI: 10.1158/0008-5472.CAN-20-3543

29. Park M.K., Zhang L., Min K.-W. et al. NEAT1 is essential for metabolic changes that promote breast cancer growth and metastasis. Cell Metab 2021;33(12):2380–97. DOI: 10.1016/j.cmet.2021.11.011

30. Lan Z., Yao X., Sun K. et al. The Interaction between lncRNA SNHG6 and hnRNPA1 contributes to the growth of colorectal cancer by enhancing aerobic glycolysis through the regulation of alternative splicing of PKM. Front Oncol 2020;10:363. DOI: 10.3389/fonc.2020.00363

31. Nie H., Ju H., Fan J. et al. O-GlcNAcylation of PGK1 coordinates glycolysis and TCA cycle to promote tumor growth. Nat Commun 2020;11(1):36. DOI: 10.1038/s41467-019-13601-8

32. Huang C., Shen Q., Song G. et al. Downregulation of PARVA promotes metastasis by modulating integrin-linked kinase activity and regulating MAPK/ERK and MLC2 signaling in prostate cancer. Transl Androl Urol 2021;10(2):915–28. DOI: 10.21037/tau-21-108

33. Tong X.-Y., Yang X.-Z., Gao S.-Q. et al. Regulating effect of cytochrome b5 overexpression on human breast cancer cells. Molecules 2022;27(14):4556. DOI: 10.3390/molecules27144556

34. Laulagnier K., Motta C., Hamdi S. et al. Mast cell- and dendritic cell-derived exosomes display a specific lipid composition and an unusual membrane organization. Biochem J 2004;380(Pt. 1): 161–71. DOI: 10.1042/BJ20031594

35. Choi D.-S., Kim D.-K., Kim Y.-K. et al. Proteomics, transcriptomics and lipidomics of exosomes and ectosomes. Proteomics 2013;13(10–11):1554–71. DOI: 10.1002/pmic.201200329

36. Llorente A., Skotland T., Sylvänne T. et al. Molecular lipidomics of exosomes released by PC-3 prostate cancer cells. Biochim Biophys Acta 2013;1831(7):1302–9. DOI: 10.1016/j.bbalip.2013.04.011

37. Carayon K., Chaoui K., Ronzier E. et al. Proteolipidic composition of exosomes changes during reticulocyte maturation. J Biol Chem 2011;286(39):34426–39. DOI: 10.1074/jbc.M111.257444

38. Beloribi S., Ristorcelli E., Breuzard G. et al. Exosomal lipids impact notch signaling and induce death of human pancreatic tumoral SOJ-6 cells. PLoS One 2012;7(10):e47480. DOI: 10.1371/journal.pone.0047480

39. Wang G., Dinkins M., He Q. et al. Astrocytes secrete exosomes enriched with proapoptotic ceramide and prostate apoptosis response 4 (PAR-4): potential mechanism of apoptosis induction in Alzheimer disease (AD). J Biol Chem 2012;287(25):21384–95. DOI: 10.1074/jbc.M112.340513

40. Rak J. Microparticles in cancer. Semin Thromb Hemost 2010;36(8):888–906. DOI: 10.1055/s-0030-1267043

41. Balaj L., Lessard R., Cho Y.-J. et al. Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat Commun 2011;2:180. DOI: 10.1038/ncomms1180

42. Tutanov O., Shtam T., Tupkin A. et al. Blood plasma exosomes contain circulating DNA in their crown. Diagnostics (Basel) 2022;12(4):854. DOI: 10.3390/diagnostics12040854

43. Xie Y., Dang W., Zhang S. et al. The role of exosomal noncoding RNAs in cancer. Mol Cancer 2019;18(1):37. DOI: 10.1186/s12943-019-0984-4

44. Eldh M., Ekstrom K., Valadi H. et al. Exosomes communicate protective messages during oxidative stress; possible role of exosomal shuttle RNA. PLoS One 2010;5(12):e15353. DOI: 10.1371/journal.pone.0015353

45. O’Brien K., Rani S., Corcoran C. et al. Exosomes from triple-negative breast cancer cells can transfer phenotypic traits representing their cells of origin to secondary cells. Eur J Cancer 2013;49(8):1845–59. DOI: 10.1016/j.ejca.2013.01.017

46. Ding G., Zhou L., Qian Y. et al. Pancreatic cancer-derived exosomes transfer miRNAs to dendritic cells and inhibit RFXAP expression via miR-212-3p. Oncotarget 2015;6(30):29877–88. DOI: 10.18632/oncotarget.4924

47. Ying X., Wu Q., Wu X. et al. Epithelial ovarian cancer-secreted exosomal miR-222-3p induces polarization of tumor-associated macrophages. Oncotarget 2016;7(28):43076–87. DOI: 10.18632/oncotarget.9246

48. Hood J.L., San R.S., Wickline S.A. Exosomes released by melanoma cells prepare sentinel lymph nodes for tumor metastasis. Cancer Res 2011;71(11):3792–801. DOI: 10.1158/0008-5472.CAN-10-4455

49. Бейерли О.А., Гареев И.Ф., Павлов В.Н. Экзосомальные длинные некодирующие РНК как биомаркеры и терапевтические мишени при раке. Креативная хирургия и онкология 2019;9(4):297–304. DOI: 10.24060/2076-3093-2019-9-4-297-304

50. Harris D.A., Patel S.H., Gucek M. et al. Exosomes released from breast cancer carcinomas stimulate cell movement. PLoS One 2015;10(3):e0117495. DOI: 10.1371/journal.pone.0117495

51. Boucheix C., Duc G.H., Jasmin C. et al. Tetraspanins and malignancy. Expert Rev Mol Med 2001;2001:1–17. DOI: 10.1017/S1462399401002381

52. Li K., Liu T., Chen J. et al. Survivin in breast cancer-derived exosomes activates fibroblasts by up-regulating SOD1, whose feedback promotes cancer proliferation and metastasis. J Biol Chem 2020;295(40):13737–52. DOI: 10.1074/jbc.RA120.013805

53. Katoh M., Katoh M. Precision medicine for human cancers with Notch signaling dysregulation (Review). Int J Mol Med 2020;45(2):279–97. DOI: 10.3892/ijmm.2019.4418

54. Yuan X., Qian N., Ling S. et al. Breast cancer exosomes contribute to pre-metastatic niche formation and promote bone metastasis of tumor cells. Theranostics 2021;11(3):1429–45. DOI: 10.7150/thno.45351

55. Patwardhan S., Mahadik P., Shetty O. et al. ECM stiffness-tuned exosomes drive breast cancer motility through thrombospondin-1. Biomaterials 2021;279:121185. DOI: 10.1016/j.biomaterials.2021.121185

56. Jordan K.R., Hall J.K., Schedin T. et al. Extracellular vesicles from young women’s breast cancer patients drive increased invasion of non-malignant cells via the focal adhesion kinase pathway: a proteomic approach. Breast Cancer Res 2020;22(1):128. DOI: 10.1186/s13058-020-01363-x

57. Самсонов Р.Б., Коваленко И.М., Васильев Д.А. Стимуляция метастатической активности клеток рака молочной железы экзосомами плазмы. Российский биотерапевтический журнал 2016;15(2):6–15. DOI: 10.17650/1726-9784-2016-15-2-6-15

58. Ham S., Lima L.G., Chai E.P.Z. et al. Breast cancer-derived exosomes alter macrophage polarization via gp130/STAT3 signaling. Front Immunol 2018;9:871. DOI: 10.3389/fimmu.2018.00871

59. Mengos A.E., Gastineau D.A., Gustafson M.P. The CD14+HLA-DRlo/neg monocyte: an immunosuppressive phenotype that restrains responses to cancer immunotherapy. Front Immunol 2019;10:1147. DOI: 10.3389/fimmu.2019.01147

60. Contini P., Ghio M., Merlo A. et al. Apoptosis of antigen-specific T lymphocytes upon the engagement of CD8 by soluble HLA class I molecules is fas ligand/fas mediated: evidence for the involvement of p56 lck, calcium calmodulin kinase II, and calcium-independent protein kinase C signaling pathways and for NF-κB and NF-AT nuclear translocation. J Immunol 2005;175(11):7244–54. DOI: 10.4049/jimmunol.175.11.7244

61. Tian X., Shen H., Li Z. et al. Tumor-derived exosomes, myeloid-derived suppressor cells, and tumor microenvironment. J Hematol Oncol 2019;12(1):84. DOI: 10.1186/s13045-019-0772-z

62. Farhood B., Najafi M., Mortezaee K. CD8+ cytotoxic T lymphocytes in cancer immunotherapy: a review. J Cell Physiol 2019;234(6):8509–21. DOI: 10.1002/jcp.27782

63. Cameron D., Piccart-Gebhart M.J., Gelber R.D. et al. 11 years’ follow-up of trastuzumab after adjuvant chemotherapy in HER2-positive early breast cancer: final analysis of the HERceptin Adjuvant (HERA) trial. Lancet 2017;389(10075):1195–205. DOI: 10.1016/S0140-6736(16)32616-2

64. Ciravolo V., Huber V., Ghedind G.C. et al. Potential role of HER2-overexpressing exosomes in countering trastuzumab-based therapy. J Cell Physiol 2012;227(2):658–67. DOI: 10.1002/jcp.22773

65. Semina S.E., Scherbakov A.M., Vnukova A.A. et al. Exosome-mediated transfer of cancer cell resistance to antiestrogen drugs. Molecules 2018;23(4):829. DOI: 10.3390/molecules23040829

66. Andreeva O.E., Sorokin D.V., Mikhaevich E.I. et al. Towards unravelling the role of ERα-targeting miRNAs in the exosome-mediated transferring of the hormone resistance. Molecules 2021;26(21):6661. DOI: 10.3390/molecules26216661

67. Семина С.Е., Руденская Е.А., Миттенберг А.Г. и др. Экзосомы и развитие резистентности опухолевых клеток к метформину: пилотное исследование. Успехи молекулярной онкологии 2017;4(3):92–8. DOI: 10.17650/2313-805X-2017-4-3-92-98

68. Chanteloup G., Cordonnier M., Isambert N. et al. Monitoring HSP70 exosomes in cancer patients’ follow up: a clinical prospective pilot study. J Extracell Vesicles 2020;9(1):1766192. DOI: 10.1080/20013078.2020.1766192

69. Melo S.A., Luecke L.B., Kahlert C. et al. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature 2015;523(7559):177–82. DOI: 10.1038/nature14581

70. Wang X., Zhong W., Bu J. et al. Exosomal protein CD82 as a diagnostic biomarker for precision medicine for breast cancer. Mol Carcinog 2019;58(5):674–85. DOI: 10.1002/mc.22960

71. Tutanov O., Orlova E., Proskura K. et al. Proteomic analysis of blood exosomes from healthy females and breast cancer patients reveals an association between different exosomal bioactivity on non-tumorigenic epithelial cell and breast cancer cell migration in vitro. Biomolecules 2020;10(4):495. DOI: 10.3390/biom10040495

72. Тутанов О.С., Бакакина Ю.С., Проскура К.В. и др. Поиск протеомных маркеров рака молочной железы в составе суммарных экзосом крови. Сибирский онкологический журнал 2020;19(2):49–61. DOI: 10.21294/1814-4861-2020-19-2-49-61

73. Sipeng L., Xinya L., Hao P. et al. Proteomic landscape of exosomes reveals the functional contributions of CD151 in triple-negative breast cancer. Mol Cell Proteomics 2021;20:100121. DOI: 13.1016/j.mcpro.2021.100121

74. Vardaki I., Ceder S., Rutishauser D. et al. Periostin is identified as a putative metastatic marker in breast cancer-derived exosomes. Oncotarget 2016;7(46):74966–78. DOI: 10.18632/oncotarget.11663

75. Rupp A.-K., Rupp C., Keller S. et al. Loss of EpCAM expression in breast cancer derived serum exosomes: Role of proteolytic cleavage. Gynecol Oncol 2011;122(2):437–46. DOI: 10.1016/j.ygyno.2011.04.035

76. Hoshino A., Kim S.H., Bojman L. et al. Extracellular vesicle and particle biomarkers define multiple human cancers. Cell 2020;182(4):1044–61.e18. DOI: 10.1016/j.cell.2020.07.009

77. Toth B., Nieuwland R., Liebhardt S. et al. Circulating microparticles in breast cancer patients: a comparative analysis with established biomarkers. Anticancer Res 2008;28(2A):1107–12.

78. Sancho-Albero M., Navascuеs N., Mendoza G. et al. Exosome origin determines cell targeting and the transfer of therapeutic nanoparticles towards target cells. J Nanobitechnol 2019;7(1):16. DOI: 10.1186/s12951-018-0437-z

79. Hazan-Halevy I., Rosenblum D., Weinstein S. et al. Cell-specific uptake of mantle cell lymphoma derived exosomes by malignant and non-malignant B-lymphocytes. Cancer Lett 2015;364(1):59–69. DOI: 10.1016/j.canlet.2015.04.026

80. Yue S., Ye X., Zhou T. et al. PGRN-/-TAMs-derived exosomes inhibit breast cancer cell invasion and migration and its mechanism exploration. Life Sci 2021;264:118687. DOI: 10.1016/j.lfs.2020.118687

81. Gong C., Tian J., Wang Z. et al. Functional exosome-mediated co-delivery of doxorubicin and hydrophobically modified microRNA 159 for triple-negative breast cancer therapy. J Nanobiotechnology 2019;17(1):93. DOI: 10.1186/s12951-019-0526-7

82. Yu M., Gai C., Li Z. et al. Targeted exosome-encapsulated erastin induced ferroptosis in triple negative breast cancer cells. Cancer Sci 2019;110(10)3173–82. DOI: 10.1111/cas.14181

83. Weaver W. J., Zhang J., Rojas J. et al. The application of exosomes in the treatment of triple-negative breast cancer. Front Mol Biosci 2022;9:1022725. DOI: 10.3389/fmolb.2022.1022725

84. Vakhshiteh F., Atyabi F., Ostad N.S. Mesenchymal stem cell exosomes: a two-edged sword in cancer therapy. Int J Nanomedicine 2019;14:2847–59. DOI: 10.2147/IJN.S200036

85. Goh J.W., Zou S., Lee K.C. et al. EXOPLEXs: chimeric drug delivery platform from the fusion of cell-derived nanovesicles and liposomes. Biomacromolecules 2018;19(1):22–30. DOI: 10.1021/acs.biomac.7b01176

86. Katakpwski M., Buller B., Zheng X. et al. Exosomes from marrow stromal cells expressing miR-146b inhibit glioma growth. Cancer Lett 2013;335(1):201–4. DOI: 10.1016/j.canlet.2013.02.019

87. Bolukbasi F.M., Mizrak A., Ozdener B.G. et al. miR-1289 and “Zipcode”-like sequence enrich mRNAs in microvesicles. Mol Ther Nucleic Acids 2012;1(2):e10. DOI: 10.1038/mtna.2011.2

88. Riazifar M., Pone J.E., Lotvall J. et al. Stem cell extracellular vesicles: extended messages of regeneration. Annu Rev Pharmacol Toxicol 2017;57:125–54. DOI: 10.1146/annurev-pharmtox-061616-030146

89. Tian Y., Li S., Song J. et al. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials 2014;11(3):2383–90. DOI: 10.1016/j.biomaterials.2013.11.083

90. Naseri Z., Oskuee K.R., Jaafari R.M. et al. Exosome-mediated delivery of functionally active miRNA-142-3p inhibitor reduces tumorigenicity of breast cancer in vitro and in vivo. Int J Nano-medicine 2018;13:7727–47. DOI: 10.2147/IJN.S182384

91. Hung E.M., Leonard N.J. Stabilization of exosome-targeting peptides via engineered glycosylation. J Biol Chem 2015;290(13):8166–72. DOI: 10.1074/jbc.M114.621383

92. Kosaka N., Yoshioka Y., Tominaga N. et al. Dark side of the exosome: the role of the exosome in cancer metastasis and targeting the exosome as a strategy for cancer therapy. Future Oncol 2014;10(4):671–81. DOI: 10.2217/fon.13.222

93. Nishida-Aoki N., Tominaga N., Takeshita F. et al. Disruption of circulating extracellular vesicles as a novel therapeutic strategy against cancer metastasis. Mol Ther 2017;25(1):181–91. DOI: 10.1016/j.ymthe.2016.10.009

94. Baglio R.S., Largerweij T., Perez-Lanzon M. et al. Blocking tumor-educated MSC paracrine activity halts osteosarcoma progression. Clin Cancer Res 2017;23(14):3721–33. DOI: 10.1158/1078-0432.CCR-16-2726

95. Santos M.F., Rappa G., Karbanova J. et al. Anti-human CD9 antibody Fab fragment impairs the internalization of extracellular vesicles and the nuclear transfer of their cargo proteins. J Cell Mol Med 2019;23(6):4408–21. DOI: 10.1111/jcmm.14334

96. Wei Z., Chen Z., Zhao Y. et al. Mononuclear phagocyte system blockade using extracellular vesicles modified with CD47 on membrane surface for myocardial infarction reperfusion injury treatment. Biomaterials 2021;275:121000. DOI: 10.1016/j.biomaterials.2021.121000

97. Tominaga N. Anti-cancer role and therapeutic potential of extracellular vesicles. Cancers (Basel) 2021;13(24):6303. DOI: 10.3390/cancers13246303

98. Roma-Rodrigues C., Fernandes A.R., Baptista P.V. Exosome in tumour microenvironment: overview of the crosstalk between normal and cancer cells. Biomed Res Int 2014;2014:179486. DOI: 10.1155/2014/179486

99. Alimirzaie S., Bagherzadeh M., Akbari M.R. Liquid biopsy in breast cancer: a comprehensive review. Clin Genet 2019;95(6):643–60. DOI: 10.1111/cge.13514


Рецензия

Для цитирования:


Шефер А.А., Фрик Я.А., Тамкович С.Н. Диагностический и терапевтический потенциал белков экзосом при раке молочной железы. Успехи молекулярной онкологии. 2023;10(2):58-69. https://doi.org/10.17650/2313-805X-2023-10-2-58-69

For citation:


Shefer A.A., Frik Ya.A., Tamkovich S.N. The diagnostic and therapeutic potential of exosomal proteins in breast cancer. Advances in Molecular Oncology. 2023;10(2):58-69. (In Russ.) https://doi.org/10.17650/2313-805X-2023-10-2-58-69

Просмотров: 442


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2313-805X (Print)
ISSN 2413-3787 (Online)