Interrelation between Pseudomonas aeruginosa quinolone signal and the level of immunoglobulins in the blood of patients with lung cancer
https://doi.org/10.17650/2313-805X-2023-10-2-126-131
Abstract
Introduction. Researchers in the field of oncology have a significant interest in the role of microorganisms in development of malignant neoplasms.
Aim. To study the levels of 2-heptyl-3-hydroxy-4-quinolone (PQS) and 2-heptyl-4-quinolone (HHQ) produced by Pseudomonas aeruginosa in the blood of patients with lung cancer and to analyze the relation between their changes and changes in the level of immunoglobulins and vascular endothelial growth factor (VEGF) in the blood of patients with lung cancer.
Materials and methods. PQS and HHQ were quantified in the blood of patients using high performance liquid chromatography. The levels of immunoglobulins G (IgG), secretory immunoglobulin A (s-IgA), and VEGF in the blood were determined using ELISA.
Results. Analysis have shown that the level of PQS in the blood of patients with lung cancer is 2-fold higher than in the control group. This change is accompanied by a decrease in the level of immunoglobulins IgG, as well as an increase in the content of s-IgA and growth factor VEGF in the blood.
Conclusion. PQS level in the blood of patients with lung cancer is elevated creating conditions aggravating the course of the main disease and worsening its prognosis.
Keywords
About the Authors
A. V. ShestopalovRussian Federation
1 Ostrovityanova St., Moscow 117997; Bld. 1, 32 Nakhimovskii prospekt, Moscow 117218
O. I. Кit
Russian Federation
14th Line, Rostov-on-Don 344037
V. V. Davydov
Russian Federation
Vadim V. Davydov.
1 Ostrovityanova St., Moscow 117997
Ya. M. Baizyanova
Russian Federation
1 Ostrovityanova St., Moscow 117997
E. Yu. Zlatnik
Russian Federation
14th Line, Rostov-on-Don 344037
I. A. Novikova
Russian Federation
14th Line, Rostov-on-Don 344037
A. B. Sagakyants
Russian Federation
14th Line, Rostov-on-Don 344037
S. A. Appolonova
Russian Federation
Bld. 1, 32 Nakhimovskii prospekt, Moscow 117218
N. E. Moskaleva
Russian Federation
Bld. 1, 32 Nakhimovskii prospekt, Moscow 117218
S. A. Rumyantsev
Russian Federation
1 Ostrovityanova St., Moscow 117997; Bld. 1, 32 Nakhimovskii prospekt, Moscow 117218
References
1. Bagirov N.S., Petukhov I.N., Dmitriev N.V., Grigorevskaia Z.V. Microbiom and cancer: is there interconnection? Literature review. Zlokachestvennye opukholi = Malignant tumors 2018;3(1):56–69. (In Russ.). DOI: 10.18027/2224-5057-2018-8-3s1-56-69
2. Aadra P.B., Matthew R.R., Scott J.B. The role of the microbiome in cancer development and therapy. CA Cancer J Clin 2017;67(4):326–44. DOI: 10.3322/caac.21398
3. Sánchez-Alcoholado L., Ramos-Molina B., Otero A. et al. The Role of the gut microbiome in colorectal cancer development and therapy response. Cancers 2020;12(6):1406. DOI: 10.3390/cancers12061406
4. Teles F.R.F., Alawi F., Castilho R.M., Wang Y. Association or causation? Exploring the oral microbiome and cancer links. J Dent Res 2020;99:1411–24. DOI: 10.1177/0022034520945242
5. Maurice N.M., Bedi B., Sadikot R.T. Pseudomonas aeruginosa biofilms: host response and clinical implications in lung infections. Am J Respir Cell Mol Biol 2018;58(4):428–39. DOI: 10.1165/rcmb.2017-0321TR
6. Riquelme S.A., Liimatta K., Fok Lung T.W. et al. Pseudomonas aeruginosa utilizes host-derived itaconate to redirect its metabolism to promote biofilm formation. Cell Metab 2020;31(6):1091–106. DOI: 10.1016/j.cmet.2020.04.017
7. Garcia-Nuñez M., Marti S., Puig C. et al. Bronchial microbiome, PA biofilm-forming capacity and exacerbation in severe COPD patients colonized by P. aeruginosa. Future Microbiol 2017;12: 379–92. DOI: 10.2217/fmb-2016-0127
8. Biswas A., Mehta H.J., Folch E.E. Chronic obstructive pulmonary disease and lung cancer: inter-relationships. Curr Opin Pulm Med 2018;24(2):152–60. DOI: 10.1097/MCP.0000000000000451
9. Patel B., Priefer R. Impact of chronic obstructive pulmonary disease, lung infection, and/or inhaled corticosteroids use on potential risk of lung cancer. Life Sci 2022;294:120374. DOI: 10.1016/j.lfs.2022.120374
10. Montagut E.J., Marco M.P. Biological and clinical significance of quorum sensing alkylquinolones: current analytical and bioanalytical methods for their quantification. Anal Bioanal Chem 2021;413(18):4599–618. DOI: 10.1007/s00216-021-03356-x
11. Yang L., Yuan T.J., Wan Y. et al. Quorum sensing: a new perspective to reveal the interaction between gut microbiota and host. Future Microbiol 2022;17:293–309. DOI: 10.2217/fmb-2021-0217
12. Liu Y.-C., Hussain F., Negm O. et al. Contribution of the alkylquinolone quorum-sensing system to the interaction of Pseudomonas aeruginosa with bronchial epithelial cells. Front Microbiol 2018;9–11. DOI:10.3389/fmicb.2018.03018
13. Azam M.W., Khan A.U. Updates on the pathogenicity status of Pseudomonas aeruginosa. Drug Discov Today 2019;24(1):350–9. DOI: 10.1016/j.drudis.2018.07.003
14. Warrier A., Satyamoorthy K., Murali T.S. Quorum-sensing regulation of virulence factors in bacterial biofilm. Future Microbiol 2021;16:1003–21. DOI: 10.2217/fmb-2020-0301
15. Liu C.Y., Xie W.G., Tian J.W., Li J. A comparatively study on inflammatory factors and immune functions of lung cancer and pulmonary ground glass attenuation. Eur Rev Med Pharmacol Sci 2017;21(18):4098–103.
16. Abolfathi H., Sheikhpour M., Shahraeini S.S. et al. Studies in lung cancer cytokine proteomics: a review. Expert Rev Proteomics 2021;18(1):49–64. DOI: 10.1080/14789450.2021.1892491
17. Rampioni G., Falcone M., Heeb S. et al. Unravelling the genome-wide contributions of specific 2-alkyl-4-quinolones and PqsE to quorum sensing in Pseudomonas aeruginosa. PLoS Pathog 2016;12(11):e1006029. DOI: 10.1371/journal.ppat.1006029
18. Kim K., Kim Y.U., Koh B.H. et al. HHQ and PQS, two Pseudomonas aeruginosa quorum-sensing molecules, down-regulate the innate immune responses through the nuclear factor-kappaB pathway. Immunology 2010;129:578–88. DOI: 10.1111/j.1365-2567.2009.03160.x
19. Hansch G.M., Prior B., Brenner-Weiss G. et al. The Pseudomonas quinolone signal (PQS) stimulates chemotaxis of polymorphonuclear neutrophils. Appl Biomater Funct Mater 2014;12:21–6. DOI: 10.5301/jabfm.5000204
20. Lin J., Cheng J., Wang Y., Shen X. The pseudomonas quinolone signal (PQS): not just for quorum sensing anymore. Front Cell Infect Microbiol 2018;8:230. DOI: 10.3389/fcimb.2018.00230
21. Jing Y., Chen X., Li K. et al. Association of antibiotic treatment with immune-related adverse events in patients with cancer receiving immunotherapy. J Immunother Cancer 2022;10(1):e003779. DOI: 10.1136/jitc-2021-003779
Review
For citations:
Shestopalov A.V., Кit O.I., Davydov V.V., Baizyanova Ya.M., Zlatnik E.Yu., Novikova I.A., Sagakyants A.B., Appolonova S.A., Moskaleva N.E., Rumyantsev S.A. Interrelation between Pseudomonas aeruginosa quinolone signal and the level of immunoglobulins in the blood of patients with lung cancer. Advances in Molecular Oncology. 2023;10(2):126-131. (In Russ.) https://doi.org/10.17650/2313-805X-2023-10-2-126-131