Современное представление о факторах риска и механизмах развития рака молочной железы
https://doi.org/10.17650/2313-805X-2023-10-3-15-23
Аннотация
В данном обзоре литературы изложены современные данные об этиопатогенезе и факторах риска рака молочной железы (РМЖ). поиск источников осуществлялся в системах PubMed, Medline, Cochrane Library, eLIBRARY, NHGRI-EBI Catalog of GWAS. В анализ включены публикации с января 2000 г. по декабрь 2022 г. Взаимодействие определенных факторов риска, эндокринных стимулов и генетических нарушений обусловливает активацию / инактивацию разнообразных сигнальных путей, которые прямо или косвенно влияют на канцерогенез. по современным генетическим оценкам вклад наследственного компонента в формирование РМЖ достигает 40 %. при взаимодействии разнообразных факторов риска происходит формирование нескольких молекулярных подтипов карцином молочной железы, отличающихся по рецепторному статусу, клиническому течению и терапевтическим подходам. Детали взаимодействия этиопатогенетических факторов РМЖ неясны и часто имеют разнонаправленный характер. Матриксные металлопротеиназы (MMPs) регулируют механизмы пролиферации и апоптоза, инвазии и метастазирования, формирования микроокружения опухоли, неоангиогенеза, а также межгенных сигнальных взаимодействий, являясь важным звеном патогенеза РМЖ.
Об авторах
Н. В. ПавловаРоссия
308010 Белгород, ул. Куйбышева, 1
308015 Белгород, ул. Победы, 85
С. С. Демин
Россия
308010 Белгород, ул. Куйбышева, 1
308015 Белгород, ул. Победы, 85
М. И. Чурносов
Россия
308015 Белгород, ул. Победы, 85
И. В. Пономаренко
Россия
308015 Белгород, ул. Победы, 85
Список литературы
1. Ferlay J., Colombet M., Soerjomataram I. et al. Cancer statistics for the year 2020: an overview. Int J Cancer 2021. DOI: 10.1002/ijc.33588
2. Злокачественные новообразования в России в 2018 году (заболеваемость и смертность). Под ред. А.Д. Каприна, В.В. Старинского, Г.В. Петровой. М.: МНИОИ им. П.А. Герцена – филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2019.
3. Портной С.М. Основные риски развития рака молочной железы и предложения по его профилактике. Опухоли женской репродуктивной системы 2018;14(3):25–39.
4. Чагай Н.Б., Мкртумян А.М. Метаболизм эстрогенов, прижизненные нарушения процессов метилирования и рак молочной железы. Проблемы эндокринологии 2019;65(3):161–73. DOI: 10.14341/probl10070
5. Łukasiewicz S., Czeczelewski M., Forma A. et al. Breast cancer – epidemiology, risk factors, classification, prognostic markers, and current treatment strategies – an updated review. Cancers 2021;13(17):4287. DOI: 10.3390/cancers13174287
6. Hanahan D., Weinberg R.A. The hallmarks of cancer. Cell 2000;100(1):57–70. DOI: 10.1016/s0092-8674(00)81683-9
7. American Cancer Society. Breast Cancer Facts & Figures 2019– 2020. Atlanta: American Cancer Society, Inc. 2019.
8. Olsson H.L., Olsson M.L. The menstrual cycle and risk of breast cancer: a review. Front Oncol 2020;10:21. DOI: 10.3389/fonc.2020.00021
9. Hilton H.N., Clarke C.L. Impact of progesterone on stem/ progenitor cells in the human breast. J Mammary Gland Biol Neoplasia 2015;20(1–2):27–37. DOI: 10.1007/s10911-015-9339-y
10. Hilton H.N., Clarke C.L., Graham J.D. Estrogen and progesterone signalling in the normal breast and its implications for cancer development. Mol Cell Endocrinol 2018;466:2–14. DOI: 10.1016/j.mce.2017.08.011
11. Howlader N., Noone A.M., Krapcho M. et al. SEER cancer statistics review, 1975–2016, National Cancer Institute. Bethesda. Available at: https://seer.cancer.gov/csr/1975_2016/.
12. Gallagher E.J., LeRoith D. Obesity and diabetes: the increased risk of cancer and cancer-related mortality. Physiol Rev 2015;95(3):727–48. DOI: 10.1152/physrev.00030.2014
13. Troisi R., Bjørge T., Gissler M. et al. The role of pregnancy, perinatal factors and hormones in maternal cancer risk: a review of the evidence. J Intern Med 2018;283(5):430–45. DOI: 10.1111/joim.12747
14. Liu K., Zhang W., Dai Z. et al. Association between body mass index and breast cancer risk: evidence based on a dose-response meta-analysis. Cancer Manag Res 2018;10:143–51. DOI: 10.2147/CMAR.S144619
15. Elands R.J.J., Offermans N.S.M., Simons C.C.J.M. et al. Associations of adult-attained height and early life energy restriction with postmenopausal breast cancer risk according to estrogen and progesterone receptor status. Int J Cancer 2019;144(8):1844–57. DOI: 10.1002/ijc.31890
16. Kang C., LeRoith D., Gallagher E.J. Diabetes, obesity, and breast cancer. Endocrinology 2018;159(11):3801–12. DOI: 10.1210/en.2018-00574
17. Marsden J. Hormonal contraception and breast cancer, what more do we need to know? Post Reproductive Health 2017;23(3):116–27. DOI: 10.1177/2053369117715370
18. Collaborative Group on Hormonal Factors in Breast Cancer. Type and timing of menopausal hormone therapy and breast cancer risk: individual participant meta-analysis of the worldwide epidemiological evidence. Lancet 2019;394(10204):1159–68. DOI: 10.1016/S0140-6736(19)31709-X
19. Johnatty S.E., Stewart C.J.R., Smith D. et al. Co-existence of leiomyomas, adenomyosis and endometriosis in women with endometrial cancer. Sci Rep 2020;10(1):3621. DOI: 10.1038/s41598-020-59916-1
20. Minami Y., Nishino Y., Kawai M. et al. Reproductive history and breast cancer survival: a prospective patient cohort study in Japan. Breast Cancer 2019;26(6):687–702. DOI: 10.1007/s12282-01900972-5
21. Islami F., Liu Y., Jemal A. et al. Breastfeeding and breast cancer risk by receptor status – a systematic review and meta-analysis. Ann Oncol 2015;26(12):2398–407. DOI: 10.1093/annonc/mdv379
22. Lambertini M., Del Mastro L., Pescio M.C. et al. Cancer and fertility preservation: international recommendations from an expert meeting. BMC Med 2016;14:1. DOI: 10.1186/s12916-015-0545-7
23. ACOG committee opinion. Breast-ovarian cancer screening. Number 239, August 2000. American College of Obstetricians and Gynecologists. Committee on genetics. Int J Gynaecol Obstet 2001;75(3):339–40.
24. Ubago-Guisado E., Rodríguez-Barranco M., Ching-López A. et al. Evidence update on the relationship between diet and the most common cancers from the European Prospective Investigation into Cancer and Nutrition (EPIC) Study: a systematic review. Nutrients 2021;13(10):3582. DOI: 3390/nu13103582
25. Laborda-Illanes A., Sanchez-Alcoholado L., Dominguez-Recio M.E. et al. Breast and gut microbiota action mechanisms in breast cancer pathogenesis and treatment. Cancers (Basel) 2020;12(9):2465. DOI: 10.3390/cancers12092465
26. McTiernan A., Friedenreich C.M., Katzmarzyk P.T. et al. Physical activity in cancer prevention and survival: a systematic review. Med Sci Sports Exerc 2019;51(6):1252–61. DOI: 10.1249/MSS.0000000000001937
27. Hansen J. Night shift work and risk of breast cancer. Curr Environ Health Rep 2017;4(3):325–39. DOI: 10.1007/s40572-017-0155-y
28. Dossus L., Boutron-Ruault M.C., Kaaks R. et al. Active and passive cigarette smoking and breast cancer risk: results from the EPIC cohort. Int J Cancer 2014;134(8):1871–88. DOI: 10.1002/ijc.28508
29. Rivkind N., Stepanenko V., Belukha I. et al. Female breast cancer risk in Bryansk Oblast, Russia, following prolonged low dose rate exposure to radiation from the Chernobyl power station accident. Int J Epidemiol 2020;49(2):448–56. DOI: 10.1093/ije/dyz214
30. Zhang Q., Liu J., Ao N. et al. Secondary cancer risk after radiation therapy for breast cancer with different radiotherapy techniques. Sci Rep 2020;10(1):1220. DOI: 10.1038/s41598-020-58134-z
31. Kim E.Y., Chang Y., Ahn J. et al. Mammographic breast density, its changes, and breast cancer risk in premenopausal and postmeno pausal women. Cancer 2020;126(21):4687–96. DOI: 10.1002/cncr.33138
32. Mazzola E., Coopey S.B., Griffin M. et al. Reassessing risk models for atypical hyperplasia: age may not matter. Breast Cancer Res Treat 2017;165(2):285–91. DOI: 10.1007/s10549-017-4320-7
33. Almansour N.M. Triple-negative breast cancer: a brief review about epidemiology, risk factors, signaling pathways, treatment and role of artificial intelligence. Front Mol Biosci 2022;9:836417. DOI: 10.3389/fmolb.2022.836417
34. Shiyanbola O.O., Arao R.F., Miglioretti D.L. et al. Emerging trends in family history of breast cancer and associated risk. Cancer Epidemiol Biomarkers Prev 2017;26(12):1753–60. DOI: 10.1158/1055-9965.EPI-17-0531
35. Mucci L.A., Hjelmborg J.B., Harris J.R. et al. Familial risk and heritability of cancer among twins in nordic countries. JAMA 2016;315(1):68–76. DOI: 10.1001/jama.2015.17703
36. Buniello A., MacArthur J.A.L., Cerezo M. et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res 2019;47(D1):D1005–12. DOI: 10.1093/nar/gky1120
37. Michailidou K., Hall P., Gonzalez-Neira A. et al. Large-scale genotyping identifies 41 new loci associated with breast cancer risk. Nat Genet 2013;45(4):353–361e3612. DOI: 10.1038/ng.2563
38. Pavlova N., Demin S., Churnosov M. et al. The modifying effect of obesity on the association of matrix metalloproteinase gene polymorphisms with breast cancer risk. Biomedicines 2022;10(10):2617. DOI: 10.3390/biomedicines10102617
39. Tung N., Lin N.U., Kidd J. et al. Frequency of germline mutations in 25 cancer susceptibility genes in a sequential series of patients with breast cancer. J Clin Oncol 2016;34(13):1460–8. DOI: 10.1200/JCO.2015.65.0747
40. Павлова Н.В., Орлова В.С., Батлуцкая И.В. и др. Роль высокопенетрантных мутаций в генах BRCA1 и CHEK2 в характере ассоциаций полиморфизма генов матриксных металлопротеиназ с раком молочной железы. Научные результаты биомедицинских исследований 2022;8(2):180–97. DOI: 10.18413/2658-6533-2022-8-2-0-4
41. Karsli-Ceppioglu S., Dagdemir A., Judes G. et al. Epigenetic mechanisms of breast cancer: an update of the current knowledge. Epigenomics 2014;6(6):651–64. DOI: 10.2217/epi.14.59
42. Romagnolo D.F., Daniels K.D., Grunwald J.T. et al. Epigenetics of breast cancer: Modifying role of environmental and bioactive food compounds. Mol Nutr Food Res 2016;60(6):1310–29. DOI: 10.1002/mnfr.201501063
43. Hałasa M., Wawruszak A., Przybyszewska A. et al. H3K18Ac as a marker of cancer progression and potential target of anti-cancer therapy. Cells 2019;8(5):485. DOI: 10.3390/cells8050485
44. Cui X., Harada S., Shen D. et al. The utility of phosphohistone H3 in breast cancer grading. Appl Immunohistochem Mol Morphol 2015;23(10):689–95. DOI: 10.1097/PAI.0000000000000137
45. Asiaf A., Ahmad S.T., Arjumand W., Zargar M.A. MicroRNAs in breast cancer: diagnostic and therapeutic potential. Methods Mol Biol 2018;1699:23–43. DOI: 10.1007/978-1-49397435-1_2
46. Имянитов Е.Н. Биология рака молочной железы. Практическая онкология 2017;18(3):221–31. DOI: 10.31917/1803221
47. Ianza A., Sirico M., Bernocchi O., Generali D. Role of the IGF-1 axis in overcoming resistance in breast cancer. Front Cell Dev Biol 2021;9:641449. DOI: 10.3389/fcell.2021.641449
48. Borgquist S., Zhou W., Jirström K. et al. The prognostic role of HER2 expression in ductal breast carcinoma in situ (DCIS); a population-based cohort study. BMC Cancer 2015;15:468. DOI: 0.1186/s12885-015-1479-3
49. Murphy N., Knuppel A., Papadimitriou N. et al. Insulin-like growth factor-1, insulin-like growth factor-biding protien-3, and breast cancer risk: observational and Mendelian randomization analyses with 430 000 women. Ann Oncol 2020;31(5):641–9. DOI: 10.1016/j.annonc.2020.01.066
50. Shibuya M., Claesson-Welsh L. Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis. Exp Cell Res 2006;312(5):549–60. DOI: 10.1016/j.yexcr.2005.11.012
51. Mahmood N., Mihalcioiu C., Rabbani S.A. Multifaceted role of the urokinase-type plasminogen activator (uPA) and its receptor (uPAR): diagnostic, prognostic, and therapeutic applications. Front Oncol 2018;8:24. DOI: 10.3389/fonc.2018.00024
52. Zajkowska M., Gacuta E., Kozłowska S. et al. Diagnostic power of VEGF, MMP-9 and TIMP-1 in patients with breast cancer. A multivariate statistical analysis with ROC curve. Adv Med Sci 2019;64(1):1–8. DOI: 10.1016/j.advms.2018.07.002
53. Radisky E.S., Radisky D.C. Matrix metalloproteinases as breast cancer drivers and therapeutic targets. Front Biosci (Landmark Ed). 2015;20(7):1144–63. DOI: 10.2741/4364
54. Kaczorowska A., Miękus N., Stefanowicz J., Adamkiewicz-Drożyńska E. Selected matrix metalloproteinases (MMP-2, MMP-7) and their inhibitor (TIMP-2) in adult and pediatric cancer. Diagnostics (Basel) 2020;10(8):547. DOI: 10.3390/diagnostics10080547
55. Conlon G.A., Murray G.I. Recent advances in understanding the roles of matrix metalloproteinases in tumour invasion and metastasis. J Pathol 2019;247(5):629–40. DOI: 10.1002/path.5225
56. Wang Q.M., Lv L., Tang Y. et al. MMP-1 is overexpressed in triplenegative breast cancer tissues and the knockdown of MMP-1 expression inhibits tumor cell malignant behaviors in vitro. Oncol Lett 2019;17(2):1732–40. DOI: 10.3892/ol.2018.9779
57. Москаленко М.И. Вовлеченность генов матриксных металлопротеиназ в формирование артериальной гипертензии и ее осложнений (обзор). Научные результаты биомедицинских исследований 2018;4(1):53–69. DOI: 10.18413/2313-8955-2018-4-1-53-69
58. Quintero-Fabián S., Arreola R., Becerril-Villanueva E. et al. Role of matrix metalloproteinases in angiogenesis and cancer. Front Oncol 2019;9:1370. DOI: 10.3389/fonc.2019.01370
59. Huang H. Matrix metalloproteinase-9 (MMP-9) as a cancer biomarker and MMP-9 biosensors: recent advances. Sensors (Basel) 2018;18(10):3249. DOI: 10.3390/s18103249
60. Pavlova N., Demin S., Churnosov M. et al. Matrix metalloproteinase gene polymorphisms are associated with breast cancer in the caucasian women of Russia. Int J Mol Sci 2022;23(20):12638. DOI: 10.3390/ijms232012638
Рецензия
Для цитирования:
Павлова Н.В., Демин С.С., Чурносов М.И., Пономаренко И.В. Современное представление о факторах риска и механизмах развития рака молочной железы. Успехи молекулярной онкологии. 2023;10(3):15-23. https://doi.org/10.17650/2313-805X-2023-10-3-15-23
For citation:
Pavlova N.P., Dyomin S.S., Churnosov M.I., Ponomarenko I.V. Modern understanding of risk factors and mechanisms of breast cancer development. Advances in Molecular Oncology. 2023;10(3):15-23. (In Russ.) https://doi.org/10.17650/2313-805X-2023-10-3-15-23