Preview

Advances in Molecular Oncology

Advanced search

Modern understanding of risk factors and mechanisms of breast cancer development

https://doi.org/10.17650/2313-805X-2023-10-3-15-23

Abstract

The article presents current data on the etiopathogenesis and risk factors of breast cancer (BC). The search for the sources was carried out in the PubMed, Medline, Cochrane Library, eLIBRARY, NHGRI-EBI Catalog of GWAS systems, publications from January 2000 to December 2022 were included. The interaction of definite risk factors, endocrine stimuli and genetic disorders causes activation / inactivation of various signaling pathways that directly or indirectly affect carcinogenesis. According to modern genetic evaluations, the contribution of the hereditary component to the formation of BC reaches 40 %. Interactiones between various risk factors form several molecular subtypes of breast carcinomas, differing in receptor status and clinical course, as well as therapeutic approaches. The details of the interaction of etiopathogenetic factors of BC are not clear, and often have a multidirectional character. Matrix metalloproteinases (MMPs) regulate the mechanisms of proliferation and apoptosis, invasion and metastasis, formation of the tumor microenvironment, neoangiogenesis, as well as intergenic signaling interactions, being an important link in the pathogenesis of BC.

About the Authors

N. P. Pavlova
Belgorod Regional Oncological Dispensary; Belgorod State National Research University
Russian Federation

Kuibyshev St., Belgorod 308010
85 Pobedy St., Belgorod 308015



S. S. Dyomin
Belgorod Regional Oncological Dispensary; Belgorod State National Research University
Russian Federation

Kuibyshev St., Belgorod 308010
85 Pobedy St., Belgorod 308015



M. I. Churnosov
Belgorod State National Research University
Russian Federation

85 Pobedy St., Belgorod 308015



I. V. Ponomarenko
Belgorod State National Research University
Russian Federation

85 Pobedy St., Belgorod 308015



References

1. Ferlay J., Colombet M., Soerjomataram I. et al. Cancer statistics for the year 2020: an overview. Int J Cancer 2021. DOI: 10.1002/ijc.33588

2. Malignant neoplasms in Russia in 2018 (morbidity and mortality). Ed. by A.D. Kaprin, V.V. Starinsky, G.V. Petrova. Moscow: P.A. Herzen Moscow State Medical Research Institute – branch of the Federal State Budgetary Institution “NMIC of Radiology” of the Ministry of Health of Russia, 2019. (In Russ.).

3. Portnoy S.M. The main risks of breast cancer and suggestions for its prevention. Opuholi zhenskoj reproduktivnoj sistemy = Tumors of the female reproductive system 2018;14(3):25–39. (In Russ.).

4. Chagaĭ N.B., Mkrtumayn A.M. Estrogen metabolism, lifetime methylation disorders, and breast cancer. Problemy Endokrinologii = Problems of endocrinology 2019;65(3):161–73. (In Russ.). DOI: 10.14341/probl10070

5. Łukasiewicz S., Czeczelewski M., Forma A. et al. Breast cancer – epidemiology, risk factors, classification, prognostic markers, and current treatment strategies – an updated review. Cancers 2021;13(17):4287. DOI: 10.3390/cancers13174287

6. Hanahan D., Weinberg R.A. The hallmarks of cancer. Cell 2000;100(1):57–70. DOI: 10.1016/s0092-8674(00)81683-9

7. American Cancer Society. Breast Cancer Facts & Figures 2019– 2020. Atlanta: American Cancer Society, Inc. 2019.

8. Olsson H.L., Olsson M.L. The menstrual cycle and risk of breast cancer: a review. Front Oncol 2020;10:21. DOI: 10.3389/fonc.2020.00021

9. Hilton H.N., Clarke C.L. Impact of progesterone on stem/ progenitor cells in the human breast. J Mammary Gland Biol Neoplasia 2015;20(1–2):27–37. DOI: 10.1007/s10911-015-9339-y

10. Hilton H.N., Clarke C.L., Graham J.D. Estrogen and progesterone signalling in the normal breast and its implications for cancer development. Mol Cell Endocrinol 2018;466:2–14. DOI: 10.1016/j.mce.2017.08.011

11. Howlader N., Noone A.M., Krapcho M. et al. SEER cancer statistics review, 1975–2016, National Cancer Institute. Bethesda. Available at: https://seer.cancer.gov/csr/1975_2016/.

12. Gallagher E.J., LeRoith D. Obesity and diabetes: the increased risk of cancer and cancer-related mortality. Physiol Rev 2015;95(3):727–48. DOI: 10.1152/physrev.00030.2014

13. Troisi R., Bjørge T., Gissler M. et al. The role of pregnancy, perinatal factors and hormones in maternal cancer risk: a review of the evidence. J Intern Med 2018;283(5):430–45. DOI: 10.1111/joim.12747

14. Liu K., Zhang W., Dai Z. et al. Association between body mass index and breast cancer risk: evidence based on a dose-response meta-analysis. Cancer Manag Res 2018;10:143–51. DOI: 10.2147/CMAR.S144619

15. Elands R.J.J., Offermans N.S.M., Simons C.C.J.M. et al. Associations of adult-attained height and early life energy restriction with postmenopausal breast cancer risk according to estrogen and progesterone receptor status. Int J Cancer 2019;144(8):1844–57. DOI: 10.1002/ijc.31890

16. Kang C., LeRoith D., Gallagher E.J. Diabetes, obesity, and breast cancer. Endocrinology 2018;159(11):3801–12. DOI: 10.1210/en.2018-00574

17. Marsden J. Hormonal contraception and breast cancer, what more do we need to know? Post Reproductive Health 2017;23(3):116–27. DOI: 10.1177/2053369117715370

18. Collaborative Group on Hormonal Factors in Breast Cancer. Type and timing of menopausal hormone therapy and breast cancer risk: individual participant meta-analysis of the worldwide epidemiological evidence. Lancet 2019;394(10204):1159–68. DOI: 10.1016/S0140-6736(19)31709-X

19. Johnatty S.E., Stewart C.J.R., Smith D. et al. Co-existence of leiomyomas, adenomyosis and endometriosis in women with endometrial cancer. Sci Rep 2020;10(1):3621. DOI: 10.1038/s41598-020-59916-1

20. Minami Y., Nishino Y., Kawai M. et al. Reproductive history and breast cancer survival: a prospective patient cohort study in Japan. Breast Cancer 2019;26(6):687–702. DOI: 10.1007/s12282-01900972-5

21. Islami F., Liu Y., Jemal A. et al. Breastfeeding and breast cancer risk by receptor status – a systematic review and meta-analysis. Ann Oncol 2015;26(12):2398–407. DOI: 10.1093/annonc/mdv379

22. Lambertini M., Del Mastro L., Pescio M.C. et al. Cancer and fertility preservation: international recommendations from an expert meeting. BMC Med 2016;14:1. DOI: 10.1186/s12916-015-0545-7

23. ACOG committee opinion. Breast-ovarian cancer screening. Number 239, August 2000. American College of Obstetricians and Gynecologists. Committee on genetics. Int J Gynaecol Obstet 2001;75(3):339–40.

24. Ubago-Guisado E., Rodríguez-Barranco M., Ching-López A. et al. Evidence update on the relationship between diet and the most common cancers from the European Prospective Investigation into Cancer and Nutrition (EPIC) Study: a systematic review. Nutrients 2021;13(10):3582. DOI: 3390/nu13103582

25. Laborda-Illanes A., Sanchez-Alcoholado L., Dominguez-Recio M.E. et al. Breast and gut microbiota action mechanisms in breast cancer pathogenesis and treatment. Cancers (Basel) 2020;12(9):2465. DOI: 10.3390/cancers12092465

26. McTiernan A., Friedenreich C.M., Katzmarzyk P.T. et al. Physical activity in cancer prevention and survival: a systematic review. Med Sci Sports Exerc 2019;51(6):1252–61. DOI: 10.1249/MSS.0000000000001937

27. Hansen J. Night shift work and risk of breast cancer. Curr Environ Health Rep 2017;4(3):325–39. DOI: 10.1007/s40572-017-0155-y

28. Dossus L., Boutron-Ruault M.C., Kaaks R. et al. Active and passive cigarette smoking and breast cancer risk: results from the EPIC cohort. Int J Cancer 2014;134(8):1871–88. DOI: 10.1002/ijc.28508

29. Rivkind N., Stepanenko V., Belukha I. et al. Female breast cancer risk in Bryansk Oblast, Russia, following prolonged low dose rate exposure to radiation from the Chernobyl power station accident. Int J Epidemiol 2020;49(2):448–56. DOI: 10.1093/ije/dyz214

30. Zhang Q., Liu J., Ao N. et al. Secondary cancer risk after radiation therapy for breast cancer with different radiotherapy techniques. Sci Rep 2020;10(1):1220. DOI: 10.1038/s41598-020-58134-z

31. Kim E.Y., Chang Y., Ahn J. et al. Mammographic breast density, its changes, and breast cancer risk in premenopausal and postmeno pausal women. Cancer 2020;126(21):4687–96. DOI: 10.1002/cncr.33138

32. Mazzola E., Coopey S.B., Griffin M. et al. Reassessing risk models for atypical hyperplasia: age may not matter. Breast Cancer Res Treat 2017;165(2):285–91. DOI: 10.1007/s10549-017-4320-7

33. Almansour N.M. Triple-negative breast cancer: a brief review about epidemiology, risk factors, signaling pathways, treatment and role of artificial intelligence. Front Mol Biosci 2022;9:836417. DOI: 10.3389/fmolb.2022.836417

34. Shiyanbola O.O., Arao R.F., Miglioretti D.L. et al. Emerging trends in family history of breast cancer and associated risk. Cancer Epidemiol Biomarkers Prev 2017;26(12):1753–60. DOI: 10.1158/1055-9965.EPI-17-0531

35. Mucci L.A., Hjelmborg J.B., Harris J.R. et al. Familial risk and heritability of cancer among twins in nordic countries. JAMA 2016;315(1):68–76. DOI: 10.1001/jama.2015.17703

36. Buniello A., MacArthur J.A.L., Cerezo M. et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res 2019;47(D1):D1005–12. DOI: 10.1093/nar/gky1120

37. Michailidou K., Hall P., Gonzalez-Neira A. et al. Large-scale genotyping identifies 41 new loci associated with breast cancer risk. Nat Genet 2013;45(4):353–361e3612. DOI: 10.1038/ng.2563

38. Pavlova N., Demin S., Churnosov M. et al. The modifying effect of obesity on the association of matrix metalloproteinase gene polymorphisms with breast cancer risk. Biomedicines 2022;10(10):2617. DOI: 10.3390/biomedicines10102617

39. Tung N., Lin N.U., Kidd J. et al. Frequency of germline mutations in 25 cancer susceptibility genes in a sequential series of patients with breast cancer. J Clin Oncol 2016;34(13):1460–8. DOI: 10.1200/JCO.2015.65.0747

40. Pavlova N.V., Orlova V.S., Batlutskaya I.V. et al. The role of highly penetrant mutations in BRCA1 and CHEK2 genes in the pattern of associations of matrix metalloproteinase gene polymorphisms with breast cancer. Nauchnye rezul'taty biomedicinskih issledovanij = Research Results in Biomedicine 2022;8(2): 180–97. (In Russ.). DOI: 10.18413/2658-6533-2022-8-2-0-4

41. Karsli-Ceppioglu S., Dagdemir A., Judes G. et al. Epigenetic mechanisms of breast cancer: an update of the current knowledge. Epigenomics 2014;6(6):651–64. DOI: 10.2217/epi.14.59

42. Romagnolo D.F., Daniels K.D., Grunwald J.T. et al. Epigenetics of breast cancer: Modifying role of environmental and bioactive food compounds. Mol Nutr Food Res 2016;60(6):1310–29. DOI: 10.1002/mnfr.201501063

43. Hałasa M., Wawruszak A., Przybyszewska A. et al. H3K18Ac as a marker of cancer progression and potential target of anti-cancer therapy. Cells 2019;8(5):485. DOI: 10.3390/cells8050485

44. Cui X., Harada S., Shen D. et al. The utility of phosphohistone H3 in breast cancer grading. Appl Immunohistochem Mol Morphol 2015;23(10):689–95. DOI: 10.1097/PAI.0000000000000137

45. Asiaf A., Ahmad S.T., Arjumand W., Zargar M.A. MicroRNAs in breast cancer: diagnostic and therapeutic potential. Methods Mol Biol 2018;1699:23–43. DOI: 10.1007/978-1-49397435-1_2

46. Imyanitov E.N. Biology of breast cancer. Prakticheskaya onkologiya = Practical Oncology 2017;18(3):221–31. (In Russ.). DOI: 10.31917/1803221

47. Ianza A., Sirico M., Bernocchi O., Generali D. Role of the IGF-1 axis in overcoming resistance in breast cancer. Front Cell Dev Biol 2021;9:641449. DOI: 10.3389/fcell.2021.641449

48. Borgquist S., Zhou W., Jirström K. et al. The prognostic role of HER2 expression in ductal breast carcinoma in situ (DCIS); a population-based cohort study. BMC Cancer 2015;15:468. DOI: 0.1186/s12885-015-1479-3

49. Murphy N., Knuppel A., Papadimitriou N. et al. Insulin-like growth factor-1, insulin-like growth factor-biding protien-3, and breast cancer risk: observational and Mendelian randomization analyses with 430 000 women. Ann Oncol 2020;31(5):641–9. DOI: 10.1016/j.annonc.2020.01.066

50. Shibuya M., Claesson-Welsh L. Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis. Exp Cell Res 2006;312(5):549–60. DOI: 10.1016/j.yexcr.2005.11.012

51. Mahmood N., Mihalcioiu C., Rabbani S.A. Multifaceted role of the urokinase-type plasminogen activator (uPA) and its receptor (uPAR): diagnostic, prognostic, and therapeutic applications. Front Oncol 2018;8:24. DOI: 10.3389/fonc.2018.00024

52. Zajkowska M., Gacuta E., Kozłowska S. et al. Diagnostic power of VEGF, MMP-9 and TIMP-1 in patients with breast cancer. A multivariate statistical analysis with ROC curve. Adv Med Sci 2019;64(1):1–8. DOI: 10.1016/j.advms.2018.07.002

53. Radisky E.S., Radisky D.C. Matrix metalloproteinases as breast cancer drivers and therapeutic targets. Front Biosci (Landmark Ed). 2015;20(7):1144–63. DOI: 10.2741/4364

54. Kaczorowska A., Miękus N., Stefanowicz J., Adamkiewicz-Drożyńska E. Selected matrix metalloproteinases (MMP-2, MMP-7) and their inhibitor (TIMP-2) in adult and pediatric cancer. Diagnostics (Basel) 2020;10(8):547. DOI: 10.3390/diagnostics10080547

55. Conlon G.A., Murray G.I. Recent advances in understanding the roles of matrix metalloproteinases in tumour invasion and metastasis. J Pathol 2019;247(5):629–40. DOI: 10.1002/path.5225

56. Wang Q.M., Lv L., Tang Y. et al. MMP-1 is overexpressed in triplenegative breast cancer tissues and the knockdown of MMP-1 expression inhibits tumor cell malignant behaviors in vitro. Oncol Lett 2019;17(2):1732–40. DOI: 10.3892/ol.2018.9779

57. Moskalenko M.I. The involvement of genes of matrix metalloproteinases inthe development of arteial hypertension and its complication (review). Nauchnye rezul'taty biomedicinskih issledovanij = Research Results in Biomedicine 2018; 4(1):53–69. (In Russ.). DOI: 10.18413/2313-8955-2018-4-1-53-69

58. Quintero-Fabián S., Arreola R., Becerril-Villanueva E. et al. Role of matrix metalloproteinases in angiogenesis and cancer. Front Oncol 2019;9:1370. DOI: 10.3389/fonc.2019.01370

59. Huang H. Matrix metalloproteinase-9 (MMP-9) as a cancer biomarker and MMP-9 biosensors: recent advances. Sensors (Basel) 2018;18(10):3249. DOI: 10.3390/s18103249

60. Pavlova N., Demin S., Churnosov M. et al. Matrix metalloproteinase gene polymorphisms are associated with breast cancer in the caucasian women of Russia. Int J Mol Sci 2022;23(20):12638. DOI: 10.3390/ijms232012638

61.


Review

For citations:


Pavlova N.P., Dyomin S.S., Churnosov M.I., Ponomarenko I.V. Modern understanding of risk factors and mechanisms of breast cancer development. Advances in Molecular Oncology. 2023;10(3):15-23. (In Russ.) https://doi.org/10.17650/2313-805X-2023-10-3-15-23

Views: 565


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2313-805X (Print)
ISSN 2413-3787 (Online)