Sexual dimorphism in cancer

Cover Page

Cite item

Full Text

Abstract

The incidence and mortality of malignant neoplasms of non-reproductive organs both carcinomas and sarcomas in men is one and a half times higher than in women. This is based on genetic differences, which are superimposed by patterns of epigenetic regulation of the expression of sex chromosome genes that determine sex differences in the processes of tissue differentiation, which, in turn, mediates the formation of the hormonal status of the body. Compared to the Y chromosome, the mammalian X chromosome contains several dozen times more genes encoding major regulators of proliferation, metabolism, immunity, and tumor growth inhibitors, as well as X-linked microRNAs affecting transcription factors and cross-regulation by other non-coding RNAs. This results in a female or male gene expression profile that accounts for phenotypic differences. This peculiarity, along with the fact that in female cells on the second inactivatedX chromosome epigenetic repression of the most important genes is reversed and, accordingly, their expression level is doubled, may largely explain the sex disparity in carcinogenesis. The influence of sex hormones and disparity in the expression of antitumor immunity contribute significantly to this difference. A detailed study of the mechanisms underlying sex dimorphism in carcinogenesis will be an essential contribution to fundamental oncology and to the practice of diagnosis, prognosis and personalized treatment of malignances with regard to their gender-specific course. These studies are especially relevant in relation to insufficiently studied soft tissue sarcomas, the ratio of the frequencies of which in men and women varies greatly depending on the histological subtype of the tumor.

About the authors

G. A. Belitsky

N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia

Email: fake@neicon.ru

24 Kashirskoe Shosse, Moscow 115522

Russian Federation

K. I. Kirsanov

N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia; Peoples’ Friendship University of Russia

Email: fake@neicon.ru

24 Kashirskoe Shosse, Moscow 115522

6 Miklukho-Maklaya St., Moscow 117198

Russian Federation

E. A. Lesovaya

N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia; I.P. Pavlov Ryazan State Medical University

Email: fake@neicon.ru

24 Kashirskoe Shosse, Moscow 115522

9 Vysokovol’tnaya St., Ryazan 390026

Russian Federation

V. P. Maksimova

N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia

Email: fake@neicon.ru

24 Kashirskoe Shosse, Moscow 115522

Russian Federation

L. V. Krivosheeva

N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia

Email: fake@neicon.ru

24 Kashirskoe Shosse, Moscow 115522

Russian Federation

M. G. Yakubovskaya

N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia; Peoples’ Friendship University of Russia

Author for correspondence.
Email: mgyakubovskaya@mail.ru

24 Kashirskoe Shosse, Moscow 115522

6 Miklukho-Maklaya St., Moscow 117198

Russian Federation

References

  1. Haupt S., Caramia F., Klein S. et al. Sex disparities matter in cancer development and therapy. Nat Rev Cancer 2021;21(6):393–407. doi: 10.1038/s41568-021-00348-y
  2. Rubin I., Lagas J., Broestl L. et al. Sex differences in cancer mechanisms. Biol Sex Differ 2020;11:17. doi: 10.1186/s13293-020-00291-x
  3. Zheng D., Trynda J., Williams C. et al. Sexual dimorphism in the incidence of human cancers. BMC Cancer 2019;19:684. doi: 10.1186/s12885-019-5902-z
  4. Tevfik Dorak M., Karpuzoglu E. Gender differences in cancer susceptibility: an inadequately addressed issue. Front Genet 2012;3:268. doi: 10.3389/fgene.2012.00268
  5. Li P., Ding Y., Liu M. et al. Sex disparities in thyroid cancer: a SEER population study. Gland Surg 2021;10(12):3200–10. doi: 10.21037/gs-21-545
  6. Jawad M.U., Zeitlinger L.N., Bewley A.F. et al. Head and neck cutaneous soft-tissue sarcoma demonstrate sex and racial/ethnic disparities in incidence and socioeconomic disparities in survival. J Clin Med 2022;11(18):5475. doi: 10.3390/jcm11185475
  7. Rouhani P., Fletcher C.D., Devesa S.S., Toro J.R. Cutaneous soft tissue sarcoma incidence patterns in the U.S.: an analysis of 12,114 cases. Cancer 2008;113(3):616–27. doi: 10.1002/cncr.23571
  8. Stewart D.R., Best A.F., Williams G.M. et al. Neoplasm risk among individuals with a pathogenic germline variant in DICER1. J Clin Oncol 2019;37(8):668–76. doi: 10.1200/JCO.2018.78.4678
  9. Apellaniz-Ruiz M., Cullinan N., Grant R. et al. DICER1 screening in 15 paediatric paratesticular sarcomas unveils an unusual DICER1-associated sarcoma. J Pathol Clin Res 2020;6(3):185–94. doi: 10.1002/cjp2.164
  10. Warren M., Hiemenz M.C., Schmidt R. et al. Expanding the spectrum of dicer1-associated sarcomas. Mod Pathol 2019;33: 164–74. doi: 10.1038/s41379-019-0366-x
  11. Gill A.J. Succinate dehydrogenase (SDH)-deficient neoplasia. Histopathology 2018;72:106–16. doi: 10.1111/his.13277 12. Sandeep K., Peddada S., Silins I. et al. Gender differences in chemical carcinogenesis in National Toxicology Program twoyear bioassays. Toxicol Pathol 2012;40(8):1160–8. doi: 10.1177/0192623312446527
  12. Belitsky G.A., Kirsanov K.I., Krivosheeva L.V. et al. Carcinogenic danger of “non-carcinogenic” compounds. Voprosy onkologii = Oncology Issues 2022;68(1):7–16. (In Russ.). doi: 10.37469/0507-3758-2022-68-1-7-16
  13. Snell D.M., Turner J.M.A. Sex chromosome effects on male-female differences in mammals. Curr Biol 2018;28(22):R1313–24. doi: 10.1016/j.cub.2018.09.018
  14. Pinheiro I., Dejager L., Libert C. X-chromosome-located microRNAs in immunity: might they explain male/female diferences? The X chromosome-genomic context may afect X-located miRNAs and downstream signaling, thereby contributing to the enhanced immune response of females. BioEssays 2011;33(11):791–802. doi: 10.1002/bies.201100047
  15. Wijchers P.J., Festenstein R.J. Epigenetic regulation of autosomal gene expression by sex chromosomes. Trends Genet 2011;27(4):132–40. doi: 10.1016/j.tig.2011.01.004
  16. Balaton B.P., Brown C.J. Contribution of genetic and epigenetic changes to escape from X-chromosome inactivation. Epigenetics Chromatin 2021;14(1):30. doi: 10.1186/s13072-021-00404-9
  17. Plath K., Fang J., Mlynarczyk-Evans S.K. et al. Role of histone H3 lysine 27 methylation in X inactivation. Science 2003;300:131–5. doi: 10.1126/science.1084274
  18. Yildirim E., Kirby J.E., Brown D E. et al. Xist RNA is a potent suppressor of hematologic cancer in mice. Cell 2013;152(4):727–42. doi: 10.1016/j.cell.2013.01.034
  19. Kanakis G.A., Nieschlag E. Klinefelter syndrome: more than hypogonadism. Metabolism 2018;86:135–44. doi: 10.1016/j.metabol.2017.09.017
  20. Ferzoco R.M., Ruddy K.J. The epidemiology of male breast cancer. Curr Oncol Rep 2016;18(1):1. doi: 10.1007/s11912-015-0487-4
  21. Kawakami T., Okamoto K., Sugihara H. et al. The roles of supernumerical X chromosomes and XIST expression in testicular germ cell tumors. J Urol 2003;169(4):1546–52. doi: 10.1097/01.ju.0000044927.23323.5a
  22. Chaligne R., Heard E. X-chromosome inactivation in development and cancer. FEBS Lett 2014;588(15):2514–22. doi: 10.1016/j.febslet.2014.06.023
  23. Pageau G.J., Hall L.L., Ganesan S. The disappearing Barr body in breast and ovarian cancers. Nat Rev Cancer 2007;7(8):628–33. doi: 10.1038/nrc2172
  24. Cotton A.M., Ge B., Light N. et al. Analysis of expressed SNPs identifies variable extents of expression from the human inactive X chromosome. Genome Biol 2013;14(11):R122. doi: 10.1186/gb-2013-14-11-r122
  25. Tukiainen T., Villani A.-C., Yen A. Landscape of X chromosome inactivation across human tissues. Nature 2017;550(7675):244–8. doi: 10.1038/nature24265
  26. Arnold A.P. X chromosome agents of sexual differentiation. Nat Rev Endocrinol 2022;18(9):574–83. doi: 10.1038/s41574-022-00697-0
  27. Snell D.M., Turner J.M. A. Sex chromosome effects on malefemale differences in mammals. Curr Biol 2018;28: R1313–24. doi: 10.1016/j.cub.2018.09.018
  28. Xu J., Deng X., Watkins R., Disteche C.M. Sex-specific differences in expression of histone demethylases Utx and Uty in mouse brain and neurons. J Neurosci 2008;28:4521–7. doi: 10.1016/j.cub.2018.09.018
  29. Dunford A., Weinstock D.M., Savova V. et al. Tumor-suppressor genes that escape from X-inactivation contribute to cancer sex bias. Nat Genet 2017;49(1):10–6. doi: 10.1038/ng.3726
  30. Oliva M., Muñoz-Aguirre M., Kim-Hellmuth S. et al. The impact of sex on gene expression across human tissues. Science 2020; 369(6509):eaba3066. doi: 10.1126/science.aba3066
  31. Cáceres A., Jene A., Esko T. et al. Extreme downregulation of chromosome y and cancer risk in men. Natl Cancer Inst 2020;112(9):913–20. doi: 10.1093/jnci/djz232
  32. Thompson D.J., Genovese G., Halvardson J. et al. Genetic predisposition to mosaic Y chromosome loss in blood. Nature 2019;575(7784):652–7. doi: 10.1038/s41586-019-1765-3
  33. Van der Meulen J., Sanghvi V., Mavrakis K. et al. The H3K27me3 demethylase UTX is a gender-specific tumor suppressor in T-cell acute lymphoblastic leukemia. Blood 2015;125(1):13–21. doi: 10.1182/blood-2014-05-577270
  34. Yi J., Shi X., Xuan Z., Wu J. Histone demethylase UTX/KDM6A enhances tumor immune cell recruitment, promotes differentiation and suppresses medulloblastoma. Cancer Lett 2021;499:188–200. doi: 10.1016/j.canlet.2020.11.031
  35. Tsuei D.J., Lee P.H., Peng H.Y. et al. Male germ cell-specific RNA binding protein RBMY: a new oncogene explaining male predominance in liver cancer. PLoS One 2011;6(11):e26948. doi: 10.1371/journal.pone.0026948
  36. Di Martino M.T., Arbitrio M., Caracciolo D. et al. miR-221/222 as biomarkers and targets for therapeutic intervention on cancer and other diseases: a systematic review. Mol Ther Nucleic Acids 2022;27:1191–224. doi: 10.1016/j.omtn.2022.02.005
  37. Di Palo A., Siniscalchi C., Salerno M. et al. What microRNAs could tell us about the human X chromosome. Cell Mol Life Sci 2020;77(20):4069–80. doi: 10.1007/s00018-020-03526-7
  38. Pinheiro I., Dejager L., Libert C. X-chromosome-located microRNAs in immunity: might they explain male/female differences? The X chromosome-genomic context may affect Xlocated miRNAs and downstream signaling, thereby contributing to the enhanced immune response of females. Bioessays 2011;33:791–802. doi: 10.1002/bies.201100047
  39. Xu S., Tao Z., Hai B. et al. miR-424(322) reverses chemoresistance via T-cell immune response activation by blocking the PD-L1 immune checkpoint. Nat Commun 2016;7:11406–19. doi: 10.1038/ncomms11406
  40. Slack F.J., Chinnaiyan A.M. The role of non-coding RNAs in oncology. Cell 2019;179:1033–55. doi: 10.1016/j.cell.2019.10.017
  41. Wanga J., Syretta C.M., Kramerb M.C. et al. Unusual mainte nance of X chromosome inactivation predisposes female lympho cytes for increased expression from the inactive X. Proc Natl Acad Sci USA 2016;113(14):E2029–38. doi: 10.1073/pnas.1520113113
  42. Reinius B., Sh C.I, Hengshuo L. et al. Female-biased expression of long non-coding RNAs in domains that escape X-inactivation in mouse. BMC Genomics 2010;11:614. doi: 10.1186/1471-2164-11-614
  43. Youness A., Miquel C.-H. Guéry J.-C. Escape from X chromosome inactivation and the female predominance in autoimmune diseases. Int J Mol Sci 2021;22(3):1114. doi: 10.3390/ijms22031114
  44. Billi A.C., Kahlenberg J.M., Gudjonsson J.E. Sex bias in autoimmunity. Curr Opin Rheumatol 2019;31(1):53–61. doi: 10.1097/BOR.0000000000000564
  45. Guan X., Polesso F., Wang C. et al. Androgen receptor activity in T cells limits checkpoint blockade efficacy. Nature 2022;606(7915):791–6. doi: 10.1038/s41586-022-04522-6
  46. Kissick H.T., Sanda M.G., Dunn L.K. et al. Androgens alter T-cell immunity by inhibiting T-helper 1 differentiation. Proc Natl Acad Sci USA 2014;111(27):9887–92. doi: 10.1073/pnas.1402468111
  47. Vellano C.P., White M.G., Andrews M.C. et al. Androgen receptor blockade promotes response to BRAF/MEK-targeted therapy. Nature 2022;606(7915):797–803. doi: 10.1038/s41586-022-04833-8
  48. Xin Chen R.Z., Ma W., Zhang J. et al. A GPR174–CCL21 module imparts sexual dimorphism to humoral immunity. Nature 2020;577(7790):416–20. doi: 10.1038/s41586-019-1873-0
  49. Yang C., Jin J., Yang Y. et al. Androgen receptor-mediated CD8+ T cell stemness programs drive sex differences in antitumor immunity. Immunity 2022;55(7):1268–83.e9. doi: 10.1016/j.immuni.2022.05.012
  50. Mode A., Gustafsson J.-A. Sex and the liver – a journey through five decades. Drug Metab Rev 2006;38(1–2):197–207. doi: 10.1080/03602530600570057
  51. Melia T., Waxman D.J. Genetic factors contributing to extensive variability of sex-specific hepatic gene expression in diversity outbred mice. PLoS One 2020;15(12):e0242665. doi: 10.1371/journal.pone.0242665
  52. Lau-Corona D., Bae W.K., Hennighausen L., Waxman D.J. Sexbiased genetic programs in liver metabolism and liver fibrosis are controlled by EZH1 and EZH2. PLoS Genet 2020;16(5):e1008796. doi: 10.1371/journal.pgen.1008796
  53. Clodfelter K.H., Holloway M.G., Hodor P. et al. Sex-dependent liver gene expression is extensive and largely dependent upon signal transducer and activator of transcription 5b (STAT5b): STAT5bdependent activation of male genes and repression of female genes revealed by microarray analysis. Mol Endocrinol (Baltimore, Md) 2006;20(6):1333–51. doi: 10.1210/me.2005-0489
  54. Montuenga L.M., Guembe L., Burrell M.A. et al. The diffuse endocrine system: from embryogenesis to carcinogenesis. Prog Histochem Cytochem 2003;38(2):155–272. doi: 10.1016/s0079-6336(03)80004-9
  55. Iaglov V.V., Iaglova N.V. Novel concepts in biology of diffuse endocrine system: results and future investigations. Vestn Ross Akad Med Nauk 2012;(4):74–81.
  56. Meireles S.I., Esteves G.H., Hirata R. et al. Early changes in gene expression induced by tobacco smoke: evidence for the importance of estrogen within lung tissue. Cancer Prev Res (Phila) 2010;3(6):707–17. doi: 10.1158/1940-6207.CAPR-09-0162
  57. Stapelfeld C., Dammann C., Maser E. Sex-specificity in lung cancer risk. Int J Cancer 2020;146(9):2376–82. doi: 10.1002/ijc.32716
  58. Schveigert D., Krasauskas A., Didziapetriene J. et al. Smoking, hormonal factors and molecular markers in female lung cancer. Neoplasma 2016;63(4):504–9. doi: 10.4149/neo_2016_402
  59. Meza R., Meernik C., Jeon J., Cote M.L. Lung cancer incidence trends by gender, race and histology in the United States, 1973– 2010. PLoS One 2015;10(3):e0121323. doi: 10.1371/journal.pone.0121323
  60. Lortet-Tieulent J., Soerjomataram I., Ferlay J. et al. International trends in lung cancer incidence by histological subtype: adenocarcinoma stabilizing in men but still increasing in women. Lung Cancer 2014;84(1):13–22. doi: 10.1016/j.lungcan.2014.01.009
  61. Smida T., Bruno T.C., Stabile L.P. Influence of estrogen on the NSCLC microenvironment: a comprehensive picture and clinical implications. Front Oncol 2020;10:137. doi: 10.3389/fonc.2020.00137
  62. Solairaja S., Ramalingam S., Dunna N.R., Venkatabalasubramanian S. Progesterone receptor membrane component 1 and its accomplice: Emerging therapeutic targets in lung cancer. Endocr Metab Immune Disord Drug Targets 2022;22(6):601–11. doi: 10.2174/1871530321666211130145542
  63. Fuentes N., Rodriguez M.S., Silveyra P. Role of sex hormones in lung cancer. Exp Biol Med (Maywood) 2021;246(19):2098–2110. doi: 10.1177/15353702211019697
  64. Recchia A.G., Musti A.M., Lanzino M. et al. A cross-talk between the androgen receptor and the epidermal growth factor receptor leads to p38mapk-dependent activation of mtor and cyclind1 expression in prostate and lung cancer cells. Int J Biochem Cell Biol 2009;41(3):603–14. doi: 10.1016/j.biocel.2008.07.004
  65. Chang C., Lee S.O., Yeh S., Chang T.M. Androgen receptor (AR) differential roles in hormone-related tumors including prostate, bladder, kidney, lung, breast and liver. Oncogene 2014;33(25): 3225–34. doi: 10.1038/onc.2013.274
  66. Berardi R., Morgese F., Santinelli A. et al. Hormonal receptors in lung adenocarcinoma: expression and difference in outcome by sex. Oncotarget 2016;7(50):82648–57. doi: 10.18632/oncotarget.12244
  67. Skov B.G., Fischer B.M., Pappot H. Oestrogen receptor beta over expression in males with non-small cell lung cancer is associated with better survival. Lung Cancer 2008;59(1):88–94. doi: 10.1016/j.lungcan.2007.07.025
  68. Dauki A.M., Blachly J.S., Kautto E.A. et al. Transcriptionally active androgen receptor splice variants promote hepatocellular carcinoma progression. Cancer Res 2020;80(3):561–75. doi: 10.1158/0008-5472.CAN-19-1117
  69. Zheng D., Wang X., Antonson P. et al. Genomics of sex hormone receptor signaling in hepatic sexual dimorphism. Mol Cell Endocrinol 2017;471:33–41. doi: 10.1016/j.mce.2017.05.025
  70. Hassan M.M., Botrus G., Abdel-Wahab R. et al. Estrogen replacement reduces risk and increases survival times of women with hepatocellular carcinoma. Clin Gastroenterol Hepatol 2017;15(11):1791–9. doi: 10.1016/j.cgh.2017.05.036
  71. Villa E. Role of estrogen in liver cancer. Womens Health 2008;4: 41–50. doi: 10.2217/17455057.4.1.41
  72. Di Maio M., De Maio E., Morabito A. et al. Hormonal treatment of human hepatocellular carcinoma. Ann N Y. Acad Sci 2006;1089:252–61. doi: 10.1196/annals.1386.007
  73. Wibowo E., Pollock P.A., Hollis N., Wassersug R.J. Tamoxifen in men: a review of adverse events. And
  74. Eggemann H., Brucker C., Schraude, M. et al. Survival benefit of tamoxifen in male breast cancer: prospective cohort analysis. Br J Cancer 2020;123(1):33–7. doi: 10.1038/s41416-020-0857-z
  75. Wang L., Cui M., Cheng D. et al. MiR-9-5p facilitates hepatocellular carcinoma cell proliferation, migration and invasion by targeting ESR1. Mol Cell Biochem 2021;476(2):575–83. doi: 10.1007/s11010-020-03927-z
  76. O’Brien M.H., Pitot H.C., Chung S.-H. et al. Estrogen receptor-α suppresses liver carcinogenesis and establishes sex-specific gene expression. Cancers (Basel) 2021;13(10):2355. doi: 10.3390/cancers13102355
  77. Li Z., Tuteja G., Schug J., Kaestner K.H. Foxa1 and Foxa2 are essential for sexual dimorphism in liver cancer. Cell 2012;148(1–2): 72–83. doi: 10.1016/j.cell.2011.11.026
  78. Zhao Y., Li Z. Interplay of estrogen receptors and FOXA factors in the liver cancer. Mol Cell Endocrinol 2015;418 Pt 3(03):334–9. doi: 10.1016/j.mce.2015.01.043
  79. Sun L., Gao Z., Luo L. et al. Estrogen affects cell growth and IGF-1 receptor expression in renal cell carcinoma. Onco Targets Ther 2018;11:5873–8. doi: 10.2147/OTT.S172149
  80. Yu C.P., Ho J.Y., Huang Y.T. et al. Estrogen inhibits renal cell carcinoma cell progression through estrogen receptor-beta activation. PLoS One 2013;8(2):e56667. doi: 10.1371/journal.pone.0056667
  81. Passarelli M.N., Phipps A.I., Potter D.J. et al. Common singlenucleotide polymorphisms in the estrogen receptor β promoter are associated with colorectal cancer survival in postmenopausal women. Cancer Res 2013;73(2):767–75. doi: 10.1158/0008-5472.CAN-12-2484
  82. Matsuoka H., Tsubak M., Yamazoe Y. et al. Tamoxifen inhibits tumor cell invasion and metastasis in mouse melanoma through suppression of PKC/MEK/ERK and PKC/PI3K/Akt pathways. Exp Cell Res 2009;315(12):2022–32. doi: 10.1016/j.yexcr.2009.04.009
  83. Chen P., Sheikh S., Ahmad A. et al. Orally administered endoxifen inhibits tumor growth in melanoma-bearing mice. Cell Mol Biol Lett 2018;23:3. doi: 10.1186/s11658-017-0068-7
  84. Hartwell H.J., Petrosky K.Y., Fox J.G. et al. Prolactin prevents hepatocellular carcinoma by restricting innate immune activation of c-Myc in mice. Proc Natl Acad Sci USA 2014;111(31):11455–60. doi: 10.1073/pnas.1404267111

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c)



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 57560 от  08.04.2014.