Молекулярные механизмы полового диморфизма в канцерогенезе

Обложка

Цитировать

Полный текст

Аннотация

Заболеваемость злокачественными новообразованиями нерепродуктивных органов, как карциномами, так и саркомами, и смертность от них у мужчин в 1,5 раза выше, чем у женщин. В основе этого лежат генетические различия, на которые накладываются закономерности эпигенетической регуляции экспрессии генов половых хромосом, определяющие половые различия в процессах дифференцировки тканей и гормонального статуса организма. по сравнению с Y-хромосомой на Х-хромосоме млекопитающих находится в несколько десятков раз больше генов, кодирующих основные регуляторы пролиферации, метаболизма, иммунитета и ингибирования опухолевого роста, а также X-сцепленных микроРНк, влияющих на транскрипционные факторы и перекрестную регуляцию другими некодирующими РНк. В результате образуется профиль экспрессии генов по женскому и мужскому типам, обусловливающий фенотипические различия. этот факт наряду с тем, что в женских клетках в некоторых важнейших генах второй инактивированной X-хромосомы происходит снятие эпигенетической репрессии и, соответственно, удвоение уровня экспрессии, может в значительной степени объяснить «половое неравенство» в канцерогенезе. Существенный вклад в это различие вносят влияние половых гормонов и неравенство в выраженности противоопухолевого иммунитета. Детальное исследование молекулярных механизмов, лежащих в основе полового диморфизма в канцерогенезе, будет существенным вкладом в фундаментальную онкологию, практику диагностики, прогноза и персонализированного лечения злокачественных новообразований с учетом особенностей их течения у мужчин и женщин. Особенно актуальны такие исследования в отношении недостаточно изученных сарком мягких тканей, соотношение частоты возникновения которых у мужчин и женщин сильно варьирует в зависимости от гистологического подтипа опухоли.

Об авторах

Г. А. Белицкий

ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н. Н. Блохина» Минздрава России

Email: fake@neicon.ru

115522 Москва, Каширское шоссе, 24

Россия

К. И. Кирсанов

ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н. Н. Блохина» Минздрава России; ФГАОУ ВО «Российский университет дружбы народов»

Email: fake@neicon.ru

115522 Москва, Каширское шоссе, 24

117198 Москва, ул. Миклухо-Маклая, 6

Россия

Е. А. Лесовая

ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н. Н. Блохина» Минздрава России;
ФГБОУ ВО «Рязанский государственный медицинский университет им. акад. И. П. Павлова»

Email: fake@neicon.ru

115522 Москва, Каширское шоссе, 24

390026 Рязань,ул. Высоковольтная, 9

 

Россия

В. П. Максимова

ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н. Н. Блохина» Минздрава России

Email: fake@neicon.ru

115522 Москва, Каширское шоссе, 24

Россия

Л. В. Кривошеева

ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н. Н. Блохина» Минздрава России

Email: fake@neicon.ru

115522 Москва, Каширское шоссе, 24

Россия

М. Г. Якубовская

ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н. Н. Блохина» Минздрава России; ФГАОУ ВО «Российский университет дружбы народов»

Автор, ответственный за переписку.
Email: mgyakubovskaya@mail.ru

115522 Москва, Каширское шоссе, 24

117198 Москва, ул. Миклухо-Маклая, 6

Россия

Список литературы

  1. Haupt S., Caramia F., Klein S. et al. Sex disparities matter in cancer development and therapy. Nat Rev Cancer 2021;21(6):393–407. doi: 10.1038/s41568-021-00348-y
  2. Rubin I., Lagas J., Broestl L. et al. Sex differences in cancer mechanisms. Biol Sex Differ 2020;11:17. doi: 10.1186/s13293-020-00291-x
  3. Zheng D., Trynda J., Williams C. et al. Sexual dimorphism in the incidence of human cancers. BMC Cancer 2019;19:684. doi: 10.1186/s12885-019-5902-z
  4. Tevfik Dorak M., Karpuzoglu E. Gender differences in cancer susceptibility: an inadequately addressed issue. Front Genet 2012;3:268. doi: 10.3389/fgene.2012.00268
  5. Li P., Ding Y., Liu M. et al. Sex disparities in thyroid cancer: a SEER population study. Gland Surg 2021;10(12):3200–10. doi: 10.21037/gs-21-545
  6. Jawad M.U., Zeitlinger L.N., Bewley A.F. et al. Head and neck cutaneous soft-tissue sarcoma demonstrate sex and racial/ethnic disparities in incidence and socioeconomic disparities in survival. J Clin Med 2022;11(18):5475. doi: 10.3390/jcm11185475
  7. Rouhani P., Fletcher C.D., Devesa S.S., Toro J.R. Cutaneous soft tissue sarcoma incidence patterns in the U.S.: an analysis of 12,114 cases. Cancer 2008;113(3):616–27. doi: 10.1002/cncr.23571
  8. Stewart D.R., Best A.F., Williams G.M. et al. Neoplasm risk among individuals with a pathogenic germline variant in DICER1. J Clin Oncol 2019;37(8):668–76. doi: 10.1200/JCO.2018.78.4678
  9. Apellaniz-Ruiz M., Cullinan N., Grant R. et al. DICER1 screening in 15 paediatric paratesticular sarcomas unveils an unusual DICER1-associated sarcoma. J Pathol Clin Res 2020;6(3):185–94. doi: 10.1002/cjp2.164
  10. Warren M., Hiemenz M.C., Schmidt R. et al. Expanding the spectrum of dicer1-associated sarcomas. Mod Pathol 2019;33: 164–74. doi: 10.1038/s41379-019-0366-x
  11. Gill A.J. Succinate dehydrogenase (SDH)-deficient neoplasia. Histopathology 2018;72:106–16. doi: 10.1111/his.13277 12. Sandeep K., Peddada S., Silins I. et al. Gender differences in chemical carcinogenesis in National Toxicology Program twoyear bioassays. Toxicol Pathol 2012;40(8):1160–8. doi: 10.1177/0192623312446527
  12. Белицкий Г.А., Кирсанов К.И., Кривошеева Л.В и др. Канцерогенная опасность «неканцерогенных» соединений. Вопросы онкологии 2022;68:1,7–16. doi: 10.37469/0507-3758-2022-68-1-7-16
  13. Snell D.M., Turner J.M.A. Sex chromosome effects on male-female differences in mammals. Curr Biol 2018;28(22):R1313–24. doi: 10.1016/j.cub.2018.09.018
  14. Pinheiro I., Dejager L., Libert C. X-chromosome-located microRNAs in immunity: might they explain male/female diferences? The X chromosome-genomic context may afect X-located miRNAs and downstream signaling, thereby contributing to the enhanced immune response of females. BioEssays 2011;33(11):791–802. doi: 10.1002/bies.201100047
  15. Wijchers P.J., Festenstein R.J. Epigenetic regulation of autosomal gene expression by sex chromosomes. Trends Genet 2011;27(4):132–40. doi: 10.1016/j.tig.2011.01.004
  16. Balaton B.P., Brown C.J. Contribution of genetic and epigenetic changes to escape from X-chromosome inactivation. Epigenetics Chromatin 2021;14(1):30. doi: 10.1186/s13072-021-00404-9
  17. Plath K., Fang J., Mlynarczyk-Evans S.K. et al. Role of histone H3 lysine 27 methylation in X inactivation. Science 2003;300:131–5. doi: 10.1126/science.1084274
  18. Yildirim E., Kirby J.E., Brown D E. et al. Xist RNA is a potent suppressor of hematologic cancer in mice. Cell 2013;152(4):727–42. doi: 10.1016/j.cell.2013.01.034
  19. Kanakis G.A., Nieschlag E. Klinefelter syndrome: more than hypogonadism. Metabolism 2018;86:135–44. doi: 10.1016/j.metabol.2017.09.017
  20. Ferzoco R.M., Ruddy K.J. The epidemiology of male breast cancer. Curr Oncol Rep 2016;18(1):1. doi: 10.1007/s11912-015-0487-4
  21. Kawakami T., Okamoto K., Sugihara H. et al. The roles of supernumerical X chromosomes and XIST expression in testicular germ cell tumors. J Urol 2003;169(4):1546–52. doi: 10.1097/01.ju.0000044927.23323.5a
  22. Chaligne R., Heard E. X-chromosome inactivation in development and cancer. FEBS Lett 2014;588(15):2514–22. doi: 10.1016/j.febslet.2014.06.023
  23. Pageau G.J., Hall L.L., Ganesan S. The disappearing Barr body in breast and ovarian cancers. Nat Rev Cancer 2007;7(8):628–33. doi: 10.1038/nrc2172
  24. Cotton A.M., Ge B., Light N. et al. Analysis of expressed SNPs identifies variable extents of expression from the human inactive X chromosome. Genome Biol 2013;14(11):R122. doi: 10.1186/gb-2013-14-11-r122
  25. Tukiainen T., Villani A.-C., Yen A. Landscape of X chromosome inactivation across human tissues. Nature 2017;550(7675):244–8. doi: 10.1038/nature24265
  26. Arnold A.P. X chromosome agents of sexual differentiation. Nat Rev Endocrinol 2022;18(9):574–83. doi: 10.1038/s41574-022-00697-0
  27. Snell D.M., Turner J.M. A. Sex chromosome effects on malefemale differences in mammals. Curr Biol 2018;28: R1313–24. doi: 10.1016/j.cub.2018.09.018
  28. Xu J., Deng X., Watkins R., Disteche C.M. Sex-specific differences in expression of histone demethylases Utx and Uty in mouse brain and neurons. J Neurosci 2008;28:4521–7. doi: 10.1016/j.cub.2018.09.018
  29. Dunford A., Weinstock D.M., Savova V. et al. Tumor-suppressor genes that escape from X-inactivation contribute to cancer sex bias. Nat Genet 2017;49(1):10–6. doi: 10.1038/ng.3726
  30. Oliva M., Muñoz-Aguirre M., Kim-Hellmuth S. et al. The impact of sex on gene expression across human tissues. Science 2020; 369(6509):eaba3066. doi: 10.1126/science.aba3066
  31. Cáceres A., Jene A., Esko T. et al. Extreme downregulation of chromosome y and cancer risk in men. Natl Cancer Inst 2020;112(9):913–20. doi: 10.1093/jnci/djz232
  32. Thompson D.J., Genovese G., Halvardson J. et al. Genetic predisposition to mosaic Y chromosome loss in blood. Nature 2019;575(7784):652–7. doi: 10.1038/s41586-019-1765-3
  33. Van der Meulen J., Sanghvi V., Mavrakis K. et al. The H3K27me3 demethylase UTX is a gender-specific tumor suppressor in T-cell acute lymphoblastic leukemia. Blood 2015;125(1):13–21. doi: 10.1182/blood-2014-05-577270
  34. Yi J., Shi X., Xuan Z., Wu J. Histone demethylase UTX/KDM6A enhances tumor immune cell recruitment, promotes differentiation and suppresses medulloblastoma. Cancer Lett 2021;499:188–200. doi: 10.1016/j.canlet.2020.11.031
  35. Tsuei D.J., Lee P.H., Peng H.Y. et al. Male germ cell-specific RNA binding protein RBMY: a new oncogene explaining male predominance in liver cancer. PLoS One 2011;6(11):e26948. doi: 10.1371/journal.pone.0026948
  36. Di Martino M.T., Arbitrio M., Caracciolo D. et al. miR-221/222 as biomarkers and targets for therapeutic intervention on cancer and other diseases: a systematic review. Mol Ther Nucleic Acids 2022;27:1191–224. doi: 10.1016/j.omtn.2022.02.005
  37. Di Palo A., Siniscalchi C., Salerno M. et al. What microRNAs could tell us about the human X chromosome. Cell Mol Life Sci 2020;77(20):4069–80. doi: 10.1007/s00018-020-03526-7
  38. Pinheiro I., Dejager L., Libert C. X-chromosome-located microRNAs in immunity: might they explain male/female differences? The X chromosome-genomic context may affect Xlocated miRNAs and downstream signaling, thereby contributing to the enhanced immune response of females. Bioessays 2011;33:791–802. doi: 10.1002/bies.201100047
  39. Xu S., Tao Z., Hai B. et al. miR-424(322) reverses chemoresistance via T-cell immune response activation by blocking the PD-L1 immune checkpoint. Nat Commun 2016;7:11406–19. doi: 10.1038/ncomms11406
  40. Slack F.J., Chinnaiyan A.M. The role of non-coding RNAs in oncology. Cell 2019;179:1033–55. doi: 10.1016/j.cell.2019.10.017
  41. Wanga J., Syretta C.M., Kramerb M.C. et al. Unusual mainte nance of X chromosome inactivation predisposes female lympho cytes for increased expression from the inactive X. Proc Natl Acad Sci USA 2016;113(14):E2029–38. doi: 10.1073/pnas.1520113113
  42. Reinius B., Sh C.I, Hengshuo L. et al. Female-biased expression of long non-coding RNAs in domains that escape X-inactivation in mouse. BMC Genomics 2010;11:614. doi: 10.1186/1471-2164-11-614
  43. Youness A., Miquel C.-H. Guéry J.-C. Escape from X chromosome inactivation and the female predominance in autoimmune diseases. Int J Mol Sci 2021;22(3):1114. doi: 10.3390/ijms22031114
  44. Billi A.C., Kahlenberg J.M., Gudjonsson J.E. Sex bias in autoimmunity. Curr Opin Rheumatol 2019;31(1):53–61. doi: 10.1097/BOR.0000000000000564
  45. Guan X., Polesso F., Wang C. et al. Androgen receptor activity in T cells limits checkpoint blockade efficacy. Nature 2022;606(7915):791–6. doi: 10.1038/s41586-022-04522-6
  46. Kissick H.T., Sanda M.G., Dunn L.K. et al. Androgens alter T-cell immunity by inhibiting T-helper 1 differentiation. Proc Natl Acad Sci USA 2014;111(27):9887–92. doi: 10.1073/pnas.1402468111
  47. Vellano C.P., White M.G., Andrews M.C. et al. Androgen receptor blockade promotes response to BRAF/MEK-targeted therapy. Nature 2022;606(7915):797–803. doi: 10.1038/s41586-022-04833-8
  48. Xin Chen R.Z., Ma W., Zhang J. et al. A GPR174–CCL21 module imparts sexual dimorphism to humoral immunity. Nature 2020;577(7790):416–20. doi: 10.1038/s41586-019-1873-0
  49. Yang C., Jin J., Yang Y. et al. Androgen receptor-mediated CD8+ T cell stemness programs drive sex differences in antitumor immunity. Immunity 2022;55(7):1268–83.e9. doi: 10.1016/j.immuni.2022.05.012
  50. Mode A., Gustafsson J.-A. Sex and the liver – a journey through five decades. Drug Metab Rev 2006;38(1–2):197–207. doi: 10.1080/03602530600570057
  51. Melia T., Waxman D.J. Genetic factors contributing to extensive variability of sex-specific hepatic gene expression in diversity outbred mice. PLoS One 2020;15(12):e0242665. doi: 10.1371/journal.pone.0242665
  52. Lau-Corona D., Bae W.K., Hennighausen L., Waxman D.J. Sexbiased genetic programs in liver metabolism and liver fibrosis are controlled by EZH1 and EZH2. PLoS Genet 2020;16(5):e1008796. doi: 10.1371/journal.pgen.1008796
  53. Clodfelter K.H., Holloway M.G., Hodor P. et al. Sex-dependent liver gene expression is extensive and largely dependent upon signal transducer and activator of transcription 5b (STAT5b): STAT5bdependent activation of male genes and repression of female genes revealed by microarray analysis. Mol Endocrinol (Baltimore, Md) 2006;20(6):1333–51. doi: 10.1210/me.2005-0489
  54. Montuenga L.M., Guembe L., Burrell M.A. et al. The diffuse endocrine system: from embryogenesis to carcinogenesis. Prog Histochem Cytochem 2003;38(2):155–272. doi: 10.1016/s0079-6336(03)80004-9
  55. Iaglov V.V., Iaglova N.V. Novel concepts in biology of diffuse endocrine system: results and future investigations. Vestn Ross Akad Med Nauk 2012;(4):74–81.
  56. Meireles S.I., Esteves G.H., Hirata R. et al. Early changes in gene expression induced by tobacco smoke: evidence for the importance of estrogen within lung tissue. Cancer Prev Res (Phila) 2010;3(6):707–17. doi: 10.1158/1940-6207.CAPR-09-0162
  57. Stapelfeld C., Dammann C., Maser E. Sex-specificity in lung cancer risk. Int J Cancer 2020;146(9):2376–82. doi: 10.1002/ijc.32716
  58. Schveigert D., Krasauskas A., Didziapetriene J. et al. Smoking, hormonal factors and molecular markers in female lung cancer. Neoplasma 2016;63(4):504–9. doi: 10.4149/neo_2016_402
  59. Meza R., Meernik C., Jeon J., Cote M.L. Lung cancer incidence trends by gender, race and histology in the United States, 1973– 2010. PLoS One 2015;10(3):e0121323. doi: 10.1371/journal.pone.0121323
  60. Lortet-Tieulent J., Soerjomataram I., Ferlay J. et al. International trends in lung cancer incidence by histological subtype: adenocarcinoma stabilizing in men but still increasing in women. Lung Cancer 2014;84(1):13–22. doi: 10.1016/j.lungcan.2014.01.009
  61. Smida T., Bruno T.C., Stabile L.P. Influence of estrogen on the NSCLC microenvironment: a comprehensive picture and clinical implications. Front Oncol 2020;10:137. doi: 10.3389/fonc.2020.00137
  62. Solairaja S., Ramalingam S., Dunna N.R., Venkatabalasubramanian S. Progesterone receptor membrane component 1 and its accomplice: Emerging therapeutic targets in lung cancer. Endocr Metab Immune Disord Drug Targets 2022;22(6):601–11. doi: 10.2174/1871530321666211130145542
  63. Fuentes N., Rodriguez M.S., Silveyra P. Role of sex hormones in lung cancer. Exp Biol Med (Maywood) 2021;246(19):2098–2110. doi: 10.1177/15353702211019697
  64. Recchia A.G., Musti A.M., Lanzino M. et al. A cross-talk between the androgen receptor and the epidermal growth factor receptor leads to p38mapk-dependent activation of mtor and cyclind1 expression in prostate and lung cancer cells. Int J Biochem Cell Biol 2009;41(3):603–14. doi: 10.1016/j.biocel.2008.07.004
  65. Chang C., Lee S.O., Yeh S., Chang T.M. Androgen receptor (AR) differential roles in hormone-related tumors including prostate, bladder, kidney, lung, breast and liver. Oncogene 2014;33(25): 3225–34. doi: 10.1038/onc.2013.274
  66. Berardi R., Morgese F., Santinelli A. et al. Hormonal receptors in lung adenocarcinoma: expression and difference in outcome by sex. Oncotarget 2016;7(50):82648–57. doi: 10.18632/oncotarget.12244
  67. Skov B.G., Fischer B.M., Pappot H. Oestrogen receptor beta over expression in males with non-small cell lung cancer is associated with better survival. Lung Cancer 2008;59(1):88–94. doi: 10.1016/j.lungcan.2007.07.025
  68. Dauki A.M., Blachly J.S., Kautto E.A. et al. Transcriptionally active androgen receptor splice variants promote hepatocellular carcinoma progression. Cancer Res 2020;80(3):561–75. doi: 10.1158/0008-5472.CAN-19-1117
  69. Zheng D., Wang X., Antonson P. et al. Genomics of sex hormone receptor signaling in hepatic sexual dimorphism. Mol Cell Endocrinol 2017;471:33–41. doi: 10.1016/j.mce.2017.05.025
  70. Hassan M.M., Botrus G., Abdel-Wahab R. et al. Estrogen replacement reduces risk and increases survival times of women with hepatocellular carcinoma. Clin Gastroenterol Hepatol 2017;15(11):1791–9. doi: 10.1016/j.cgh.2017.05.036
  71. Villa E. Role of estrogen in liver cancer. Womens Health 2008;4: 41–50. doi: 10.2217/17455057.4.1.41
  72. Di Maio M., De Maio E., Morabito A. et al. Hormonal treatment of human hepatocellular carcinoma. Ann N Y. Acad Sci 2006;1089:252–61. doi: 10.1196/annals.1386.007
  73. Wibowo E., Pollock P.A., Hollis N., Wassersug R.J. Tamoxifen in men: a review of adverse events. And
  74. Eggemann H., Brucker C., Schraude, M. et al. Survival benefit of tamoxifen in male breast cancer: prospective cohort analysis. Br J Cancer 2020;123(1):33–7. doi: 10.1038/s41416-020-0857-z
  75. Wang L., Cui M., Cheng D. et al. MiR-9-5p facilitates hepatocellular carcinoma cell proliferation, migration and invasion by targeting ESR1. Mol Cell Biochem 2021;476(2):575–83. doi: 10.1007/s11010-020-03927-z
  76. O’Brien M.H., Pitot H.C., Chung S.-H. et al. Estrogen receptor-α suppresses liver carcinogenesis and establishes sex-specific gene expression. Cancers (Basel) 2021;13(10):2355. doi: 10.3390/cancers13102355
  77. Li Z., Tuteja G., Schug J., Kaestner K.H. Foxa1 and Foxa2 are essential for sexual dimorphism in liver cancer. Cell 2012;148(1–2): 72–83. doi: 10.1016/j.cell.2011.11.026
  78. Zhao Y., Li Z. Interplay of estrogen receptors and FOXA factors in the liver cancer. Mol Cell Endocrinol 2015;418 Pt 3(03):334–9. doi: 10.1016/j.mce.2015.01.043
  79. Sun L., Gao Z., Luo L. et al. Estrogen affects cell growth and IGF-1 receptor expression in renal cell carcinoma. Onco Targets Ther 2018;11:5873–8. doi: 10.2147/OTT.S172149
  80. Yu C.P., Ho J.Y., Huang Y.T. et al. Estrogen inhibits renal cell carcinoma cell progression through estrogen receptor-beta activation. PLoS One 2013;8(2):e56667. doi: 10.1371/journal.pone.0056667
  81. Passarelli M.N., Phipps A.I., Potter D.J. et al. Common singlenucleotide polymorphisms in the estrogen receptor β promoter are associated with colorectal cancer survival in postmenopausal women. Cancer Res 2013;73(2):767–75. doi: 10.1158/0008-5472.CAN-12-2484
  82. Matsuoka H., Tsubak M., Yamazoe Y. et al. Tamoxifen inhibits tumor cell invasion and metastasis in mouse melanoma through suppression of PKC/MEK/ERK and PKC/PI3K/Akt pathways. Exp Cell Res 2009;315(12):2022–32. doi: 10.1016/j.yexcr.2009.04.009
  83. Chen P., Sheikh S., Ahmad A. et al. Orally administered endoxifen inhibits tumor growth in melanoma-bearing mice. Cell Mol Biol Lett 2018;23:3. doi: 10.1186/s11658-017-0068-7
  84. Hartwell H.J., Petrosky K.Y., Fox J.G. et al. Prolactin prevents hepatocellular carcinoma by restricting innate immune activation of c-Myc in mice. Proc Natl Acad Sci USA 2014;111(31):11455–60. doi: 10.1073/pnas.1404267111

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© ,



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 57560 от  08.04.2014.