Preview

Advances in Molecular Oncology

Advanced search

Cellular microenvironment as an object of targeted therapy for malignant neoplasms

https://doi.org/10.17650/2313-805X-2023-10-4-8-20

Abstract

The dynamic relationships between tumor cells and their microenvironment are of crucial importance in the development and progression of the malignant process. Given the multifunctional potential of heterogeneous populations surrounding a tumor, targeting components of the microenvironment has long been regarded as a promising strategy in modern anticancer therapy. This review discusses the role of the components of the cellular microenvironment in carcinogenesis, analyzes in detail the main ways and mechanisms of action on the main cell populations, which are of the greatest interest in the context of the development of innovative anticancer therapy.

About the Authors

E. Yu. Zyablitskaya
S.I. Georgievsky Medical Academy, V.I. Vernadsky Crimean Federal University
Russian Federation

Evgenia Yu. Zyablitskaya.

Bld. 7, 5 Lenin Boulevard, Simferopol 295051



A. V. Kubyshkin
S.I. Georgievsky Medical Academy, V.I. Vernadsky Crimean Federal University
Russian Federation

Bld. 7, 5 Lenin Boulevard, Simferopol 295051



L.  E. Sorokina
S.I. Georgievsky Medical Academy, V.I. Vernadsky Crimean Federal University
Russian Federation

Bld. 7, 5 Lenin Boulevard, Simferopol 295051



A. V. Serebryakova
S.I. Georgievsky Medical Academy, V.I. Vernadsky Crimean Federal University
Russian Federation

Bld. 7, 5 Lenin Boulevard, Simferopol 295051



K.  A. Aliev
S.I. Georgievsky Medical Academy, V.I. Vernadsky Crimean Federal University
Russian Federation

Bld. 7, 5 Lenin Boulevard, Simferopol 295051



P.  E.  Maksimova
S.I. Georgievsky Medical Academy, V.I. Vernadsky Crimean Federal University
Russian Federation

Bld. 7, 5 Lenin Boulevard, Simferopol 295051



A. E. Lazarev
S.I. Georgievsky Medical Academy, V.I. Vernadsky Crimean Federal University
Russian Federation

Bld. 7, 5 Lenin Boulevard, Simferopol 295051



A. I.  Balakchina
S.I. Georgievsky Medical Academy, V.I. Vernadsky Crimean Federal University
Russian Federation

Bld. 7, 5 Lenin Boulevard, Simferopol 295051



I. O.  Golovkin
S.I. Georgievsky Medical Academy, V.I. Vernadsky Crimean Federal University
Russian Federation

Bld. 7, 5 Lenin Boulevard, Simferopol 295051



References

1. Koontongkaew S. The tumor microenvironment contribution to development, growth, invasion and metastasis of head and neck squamous cell carcinomas. J Cancer 2013;4(1):66–83. DOI: 10.7150/jca.5112

2. Zibirov R.F., Mozerov S.A. Characterization of the tumor cell microenvironment. Onkologiya. Zhurnal im. P.A. Gercena = P.A. Herzen Journal of Oncology 2018;7(2):67–72. (In Russ.). DOI: 10.17116/onkolog20187267-72

3. Ataei A., Solovyeva V.V., Rizvanov A.A., Arab S.Sh. Tumor microenvironment: a key contributor to cancer progression, invasion, and drug resistance. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki = Scientific notes of Kazan University. Series “Natural Sciences” 2020;162:507–28. (In Russ.). DOI: 10.26907/2542-064X.2020.4.507-528

4. Krahmal’ N.V., Zav’jalova M.V., Denisov E.V. et al. Invasion of tumor epithelial cells: mechanisms and manifestations. Acta Naturae 2015;7(2):18–31. (In Russ.).

5. Dudley A.C. Tumor endothelial cells. Cold Spring Harb Perspect Med 2012;2(3):a006536. DOI: 10.1101/cshperspect.a006536

6. Baghban R., Roshangar L., Jahanban-Esfahlan R. et al. Tumor microenvironment complexity and therapeutic implications at a glance. Cell Commun Signal 2020;18(1):59. DOI: 10.1186/s12964-020-0530-4

7. Gille H., Kowalski J., Li B. et al. Analysis of biological effects and signaling properties of Flt-1 (VEGFR-1) and KDR (VEGFR-2): a reassessment using novel receptor-specific vascular endothelial growth factor mutants. J Biol Chem 2001;276:3222–30. DOI: 10.1074/jbc.M002016200

8. Daei Farshchi Adli A., Jahanban-Esfahlan R., Seidi K. et al. An overview on Vadimezan (DMXAA): The vascular disrupting agent. Chem Biol Drug Des 2018;91(5):996–1006. DOI: 10.1111/cbdd.13166

9. Zhang Y., Xiong X., Huai Y. et al. Gold nanoparticles disrupt tumor microenvironment – endothelial cell cross talk to inhibit angiogenic phenotypes in vitro. Bioconjug Chem 2019;30(6):1724–33. DOI: 10.1021/acs.bioconjchem.9b00262

10. Nomura T., Yamakawa M., Shimaoka T. et al. Development of dendritic cell-based immunotherapy targeting tumor blood vessels in a mouse model of lung metastasis. Biol Pharm Bull 2019;42(4):645–8. DOI: 10.1248/bpb.b18-00737

11. Liu T., Zhou L., Li D. et al. Cancer-associated fibroblasts build and secure the tumor microenvironment. Front Cell Dev Biol 2019;7:60. DOI: 10.3389/fcell.2019.00060

12. Puré E., Hingorani S.R. Mesenchymal cell plasticity and perfidy in epithelial malignancy. Trends Cancer 2018;4(4):273–7. DOI: 10.1016/j.trecan.2018.02.007

13. Shiga K., Hara M., Nagasaki T. et al. Cancer-associated fibroblasts: their characteristics and their roles in tumor growth. Cancers 2015;7(4):2443–58. DOI: 10.3390/cancers7040902

14. Ermakov M.S., Nushtaeva A.A., Richter V.A., Koval O.A. Cancer-associated fibroblasts and their role in tumor progression. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding 2022;26(1):14–21. (In Russ.). DOI: 10.18699/VJGB-22-03

15. Hosein A.N., Wu M., Arcand S.L. et al. Breast carcinoma-associated fibroblasts rarely contain p53 mutations or chromosomal aberrations. Cancer Res 2010;70(14):5770–7. DOI: 10.1158/0008-5472.CAN-10-0673

16. Oleynikova N.А., Danilova N.V., Mikhailov I.A. et al. Cancer-associated fibroblasts and their significance in tumor progression. Arkhiv Patologii = Pathology Archive 2020;82(1):68–77. (In Russ.). DOI: 10.17116/patol20208201168

17. Kalluri R. The biology and function of fibroblasts in cancer. Nat Rev Cancer 2016;16(9):582–98. DOI: 10.1038/nrc.2016.73

18. Monteran L., Erez N. The dark side of fibroblasts: cancer-associated fibroblasts as mediators of immunosuppression in the tumor microenvironment. Front Immunol 2019;10:1835. DOI: 10.3389/fimmu.2019.01835

19. Jones J.O., Moody W.M., Shields J.D. Microenvironmental modulation of the developing tumor: an immune-stromal dialogue. Mol Oncol 2021;15(10):2600–33. DOI: 10.1002/1878-0261.12773

20. Pavlides S., Whitaker-Menezes D., Castello-Cros R. et al. The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle 2009;8(23):3984–4001. DOI: 10.4161/cc.8.23.10238

21. Jiang G.M,. Xu W., Du J. et al. The application of the fibroblast activation protein alpha-targeted immunotherapy strategy. Oncotarget 2016;7(22):33472–82. DOI: 10.18632/oncotarget.8098

22. Yoshida T., Ishii G., Goto K. et al. Podoplanin-positive cancer-associated fibroblasts in the tumor microenvironment induce primary resistance to EGFR-TKIs in lung adenocarcinoma with EGFR mutation. Clinl Cancer Res 2015;21(3):642–51. DOI: 10.1158/1078-0432.CCR-14-0846

23. Noy R., Pollard J.W. Tumor-associated macrophages: from mechanisms to therapy. Immunity 2014;41(1):49–61. DOI: 10.1016/j.immuni.2014.06.010

24. Laviron M., Boissonnas A. Ontogeny of tumor-associated macrophages. Front Immunol 2019;10:1799. DOI: 10.3389/fimmu.2019.01799

25. Mantovani A., Sica A., Sozzani S. et al. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 2004;25(12):677–86. DOI: 10.1016/j.it.2004.09.015

26. Nesbit M., Schaider H., Miller T.H., Herlyn M. Low-level monocyte chemoattractant protein-1 stimulation of monocytes leads to tumor formation in nontumorigenic melanoma cells. J Immunol 2001;166(11):6483–90. DOI: 10.4049/jimmunol.166.11.6483

27. Porta C., Subhra Kumar B., Larghi P. et al. Tumor promotion by tumor-associated macrophages. Adv Exp Med Biol 2007;604: 47–86. DOI: 10.1007/978-0-387-69116-9_5

28. Valkovic T., Dobrila F., Melato M. et al. Correlation between vascular endothelial growth factor, angiogenesis and tumor-associated macrophages in invasive ductal breast carcinoma. Virchows Arch 2002;440(6):583–8. DOI: 10.1007/s004280100458

29. Chen Y., Tan W., Wang C. Tumor-associated macrophage-derived cytokines enhance cancer stem-like characteristics through epithelial-mesenchymal transition. Onco Targets Ther 2018;11:3817–26. DOI: 10.2147/OTT.S168317

30. Mantovani A., Marchesi F., Malesci A. et al. Tumor-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol 2017;14(7):399–416. DOI: 10.1038/nrclinonc.2016.217

31. Van Rooijen N., Sanders A. Liposome mediated depletion of macrophages: mechanism of action, preparation of liposomes and applications. J Immunol Methods 1994;174(1–2):83–93. DOI: 10.1016/0022-1759(94)90012-4

32. Banciu M., Metselaar J.M., Schiffelers R.M., Storm G. Antitumor activity of liposomal prednisolone phosphate depends on the presence of functional tumor-associated macrophages in tumor tissue. Neoplasia 2008;10(2):108–17. DOI: 10.1593/neo.07913

33. Sato K., Fujita S. Dendritic cells: nature and classification. Allergol Int 2007;56(3):183–91. DOI: 10.2332/allergolint.R-06-139

34. Oleinik E.K., Shibaev M.I., Ignatiev KS. et al. Tumor microenvironment: the formationof the immune profile. Medicinskaya immunologiya = Medical Immunology. 2020;22(2):207–20. (In Russ.). DOI: 10.15789/1563-0625-TMT-1909

35. Shurin M.R., Yurkovetsky Z.R., Tourkova I.L. Inhibition of CD40 expression and CD40-mediated dendritic cell function by tumor-derived IL-10. Int J Cancer 2002;101(1):61–8. DOI: 10.1002/ijc.10576

36. Manavalan J.S., Rossi P.C., Vlad G. et al. High expression of ILT3 and ILT4 is a general feature of tolerogenic dendritic cells. Transpl Immunol 2003;11(3–4):245–58. DOI: 10.1016/s0966-3274(03)00058-3

37. Liu Q., Zhang C., Sun A. et al. Tumor-educated CD11 bhighIalow regulatory dendritic cells suppress T cell response through arginase I. J Immunol 2009;182(10):6207–16. DOI: 10.4049/jimmunol.0803926

38. Anandasabapathy N., Victora G.D., Meredith M. et al. Flt3L controls the development of radiosensitive dendritic cells in the meninges and choroid plexus of the steady-state mouse brain. J Exp Med 2011;208(8):1695–705. DOI: 10.1084/jem.20102657

39. Salmon H., Idoyaga J., Rahman A. et al. Expansion and activation of CD103(+) dendritic cell progenitors at the tumor site enhances tumor responses to therapeutic PD-L1 and BRAF inhibition. Immunity 2016;44(4):924–38. DOI: 10.1016/j.immuni.2016.03.012

40. Anandasabapathy N., Breton G., Hurley A. et al. Efficacy and safety of CDX-301, recombinant human Flt3L, at expanding dendritic cells and hematopoietic stem cells in healthy human volunteers. Bone Marrow Transplant 2015;50(7):924–30. DOI: 10.1038/bmt.2015.74

41. Agrawal V., Benjamin K.T., Ko E.C. Radiotherapy and immunotherapy combinations for lung cancer. Curr Oncol Rep 2020;23(1):4. DOI: 10.1007/s11912-020-00993-w

42. Anguille S., Smits E.L., Lion E. et al. Clinical use of dendritic cells for cancer therapy. Lancet Oncol 2014;15(7):e257–67. DOI: 10.1016/s1470-2045(13)70585-0

43. Jiang Y., Li Y., Zhu B. T-cell exhaustion in the tumor microenvironment. Cell Death Dis 2015;6(6):e1792. DOI: 10.1038/cddis.2015.162

44. Chang C.H., Curtis J.D., Maggi L.B. et al. Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 2013;153(6):1239–51. DOI: 10.1016/j.cell.2013.05.016

45. Fife B.T., Bluestone J.A. Control of peripheral T-cell tolerance and autoimmunity via the CTLA-4 and PD-1 pathways. Immunol Rev 2008;224:166–82. DOI: 10.1111/j.1600-065X.2008.00662.x

46. Leach D.R., Krummel M.F., Allison J.P. Enhancement of antitumor immunity by CTLA-4 blockade. Science 1996;271(5256):1734–6. DOI: 10.1126/science.271.5256.1734

47. Kwon E.D., Hurwitz A.A., Foster B.A. et al. Manipulation of T cell costimulatory and inhibitory signals for immunotherapy of prostate cancer. Proc Natl Acad Sci USA 1997;94(15):8099–103. DOI: 10.1073/pnas.94.15.8099

48. Hurwitz A.A., Yu T.F., Leach D.R., Allison J.P. CTLA-4 blockade synergizes with tumor-derived granulocyte-macrophage colony-stimulating factor for treatment of an experimental mammary carcinoma. Proc Natl Acad Sci USA 1998;95(17):10067–71. DOI: 10.1073/pnas.95.17.10067

49. Hodi F.S., O’Day S.J., McDermott D.F. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 2010;363(8):711–23. DOI: 10.1056/NEJMoa1003466

50. Weber J.S., D’Angelo S.P., Minor D. et al. Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol 2015;16(4):375–84. DOI: 10.1016/S1470-2045(15)70076-8

51. Robert C., Schachter J., Long G.V. et al. Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med 2015;372(26):2521–32. DOI: 10.1056/NEJMoa1503093

52. Robert C., Long G.V., Brady B. et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med 2015;372(4):320–30. DOI: 10.1056/NEJMoa1412082

53. Gong J., Chehrazi-Raffle A., Reddi S., Salgia R. Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: a comprehensive review of registration trials and future considerations. J Immunother Cancer 2018;6(1):8. DOI: 10.1186/s40425-018-0316-z

54. Mann J.E. Atezolizumab (tecentriq®). Oncology Times 2017;39(4):31. DOI: 10.1097/01.cot.0000513325.52233.f1

55. Zlatnik E.Yu., Sitkovskaja A.O., Nepomnjashhaja E.M. et al. Achievements and prospects of cellular technologies based on activated lymphocytes in the treatment of malignant tumors. Kazanskij medicinskij zhurnal = Kazan Medical Journal 2018;99(5):792–801. (In Russ.). DOI: 10.17816/KMJ2018–792

56. Rosenberg S.A., Mulé J.J., Spiess P.J. et al. Regression of established pulmonary metastases and subcutaneous tumor mediated by the systemic administration of high-dose recombinant interleukin 2. J Exp Med 1985;161(5):1169–88. DOI: 10.1084/jem.161.5.1169

57. Jackson H.J., Rafiq S., Brentjens R.J. Driving CAR T-cells forward. Nat Rev Clin Oncol 2016;13(6):370–83. DOI: 10.1038/nrclinonc.2016.36

58. Ustjugova E.A., Savkina M.V., Gorjaev A.A. et al. The use of biomedical cell products for the treatment of oncological diseases. BIO-preparaty. Profilaktika, diagnostika, lechenie = BIO medication. Prevention, diagnosis, treatment 2019;19(4):206–14. (In Russ.). DOI: 10.30895/2221-996X-2019-19-4-206-214

59. Chang Z.L., Lorenzini M.H., Chen X. et al. Rewiring T-cell responses to soluble factors with chimeric antigen receptors. Nat Chem Biol 2018;14(3):317–24. DOI: 10.1038/nchembio.2565

60. Hartmann J., Schüßler-Lenz M., Bondanza A., Buchholz C.J. Clinical development of CAR T cells-challenges and opportunities in translating innovative treatment concepts. EMBO Mol Med 2017;9(9):1183–97. DOI: 10.15252/emmm.201607485


Review

For citations:


Zyablitskaya E.Yu., Kubyshkin A.V., Sorokina L.E., Serebryakova A.V., Aliev K.A., Maksimova P.E., Lazarev A.E., Balakchina A.I., Golovkin I.O. Cellular microenvironment as an object of targeted therapy for malignant neoplasms. Advances in Molecular Oncology. 2023;10(4):8-20. (In Russ.) https://doi.org/10.17650/2313-805X-2023-10-4-8-20

Views: 483


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2313-805X (Print)
ISSN 2413-3787 (Online)