Preview

Advances in Molecular Oncology

Advanced search

Analysis of the expression of matrix RNA of a panel of genes of morphologically unchanged rectal epithelium as a method of early diagnosis of colon pathology

https://doi.org/10.17650/2313-805X-2023-10-4-97-107

Abstract

Introduction. The absence of specific clinical symptoms in the early stages of colorectal cancer development leads to the fact that a quarter of patients who seek help for the first time have a metastatic stage of the disease. For the timely detection of pre-tumor disorders or hidden foci of malignancy, the possibilities of modern molecular biological technologies are being actively studied today.

Aim. To develop a method for diagnosing tumor diseases of the colon based on molecular genetic analysis of morphologically unchanged intestinal epithelium distant from the focus of the tumor lesion.

Materials and methods. We examined the matrix RNA (mRNA)  expression profile of 63 candidate genes potentially associated with the pathogenesis of neoplastic changes in rectal mucosal samples. Samples were obtained during prophylactic and/or diagnostic video colonoscopy of 122 patients, 41 of whom had no history of breast cancer (“Normal”), 32 patients were diagnosed with breast cancer polyps (“Polyposis”) and 49 patients were diagnosed with breast cancer (“colorectal cancer”). mRNA expression was assessed by reverse transcription polymerase chain reaction.

Results. Using the discriminant analysis method, it was established that  the cellular material of scrapings from the rectum in the “colorectal cancer” group reliably, with a classification accuracy above 96 %, differs in expression phenotype from the “Normal” and “Polyposis” groups.

Conclusion. The data obtained are a prerequisite for the development of a minimally invasive diagnostic method that can be used as part of an outpatient  examination to assess the risk of colon tumor disease.

About the Authors

V.  C. Bozhenko
Russian Scientific Center of Roentgenoradiology
Russian Federation

Vladimir K. Bozhenko.

86 Profsoyuznaya St., Moscow 117997



S. V. Goncharov
Russian Scientific Center of Roentgenoradiology
Russian Federation

86 Profsoyuznaya St., Moscow 117997



M. V. Zakharenko
Russian Scientific Center of Roentgenoradiology
Russian Federation

86 Profsoyuznaya St., Moscow 117997



Ya.  Yu.  Kiseleva
Russian Scientific Center of Roentgenoradiology
Russian Federation

86 Profsoyuznaya St., Moscow 117997



T. A. Karmakova
P.A. Herzen Moscow Research Oncological Institute – branch of the National Medical Research Center of Radiology, Ministry of Health of Russia
Russian Federation

32nd Botkinsky Proezd, Moscow 125284



T.  M. Kulinich
Russian Scientific Center of Roentgenoradiology
Russian Federation

86 Profsoyuznaya St., Moscow 117997



U. S. Stanoevich
G.E. Ostroverkhov Kursk Oncology Research and Clinical Center
Russian Federation

1 Eliseeva St., Kislino Hutor, Ryshkovsky s/s, Kursk Region, Kursk District 305524



N.  V. Melnikova
Russian Scientific Center of Roentgenoradiology
Russian Federation

86 Profsoyuznaya St., Moscow 117997



A. L. Senchukova
Russian Scientific Center of Roentgenoradiology
Russian Federation

86 Profsoyuznaya St., Moscow 117997



 I.  B.  Grunin
Russian Scientific Center of Roentgenoradiology
Russian Federation

86 Profsoyuznaya St., Moscow 117997



O.  P. Bliznyukov
Russian Scientific Center of Roentgenoradiology
Russian Federation

86 Profsoyuznaya St., Moscow 117997



V. A. Solodky
Russian Scientific Center of Roentgenoradiology
Russian Federation

86 Profsoyuznaya St., Moscow 117997



References

1. Shaukat A., Kahi C.J., Burke C.A. et al. ACG Clinical Guidelines: Colorectal Cancer Screening 2021. Am J Gastroenterol 2021;16 (3):458–79. DOI: 10.14309/ajg.0000000000001122

2. The state of oncological care to the population of Russia in 2021. Ed. by A.D. Kaprin, V.V. Starinsky, A.O. Shakhzadova. Moscow: P.A. Herzen Moscow State Medical Research Institute – branch of the Federal State Budgetary Institution “NMIC of Radiology” of the Ministry of Health of Russia, 2022. 239 p. (In Russ.).

3. Swiderska M., Choromańska B., Dąbrowska E. et al. The diagnostics of colorectal cancer. Contemp Oncol (Pozn) 2014;18(1):1–6. DOI: 10.5114/wo.2013.39995

4. Raginel T., Puvinel J., Ferrand O. et al. A population-based comparison of immunochemical fecal occult blood tests for colorectal cancer screening. Gastroenterology 2013;144(5):918–25. DOI: 10.1053/j.gastro.2013.01.042

5. Wang X., Kuang Y.Y., Hu X.T. Advances in epigenetic biomarker research in colorectal cancer. World J Gastroenterol 2014;20(15):4276–87. DOI: 10.3748/wjg.v20.i15.4276

6. Galandiuk S., Rodriguez-Justo M., Jeffery R. et al. Field cancerization in the intestinal epithelium of patients with Crohn’s ileocolitis. Gastroenterology 2012;142(4):855–64. DOI: 10.1053/j.gastro.2011.12.004

7. Dampier C.H., Devall M., Jennelle L.T. et al. Oncogenic features in histologically normal mucosa: novel insights into field effect from a mega-analysis of colorectal transcriptomes. Clin Transl Gastroenterol 2020;11(7):e00210. DOI: 10.14309/ctg.0000000000000210

8. Hegde M., Ferber M., Mao R. et al. ACMG technical standards and guidelines for genetic testing for inherited colorectal cancer (Lynch syndrome, familial adenomatous polyposis, and MYH-associated polyposis). Genet Med 2014;16(1):101–16. DOI: 10.1038/gim.2013.166

9. Bozic I., Antal T., Ohtsuki H. et al. Accumulation of driver and passenger mutations during tumor progression. Proc Natl Acad Sci USA 2010;107(43):18545–50. DOI: 10.1073/pnas.1010978107

10. Kulinich T.M., Zaharenko M.V., Dzhikiya E.L. et al. Investigation of the expression level of genes-markers of proliferative activity in the mucosa at normal and various pathologies of the colon. Uspekhi molekulyarnoy onkologii = Advances in Molecular Oncology 2020;7(2):39–46. (In Russ.). DOI: 10.17650/2313-805X-2020-7-2-39-46

11. Aran D., Camarda R., Odegaard J. et al. Comprehensive analysis of normal adjacent to tumor transcriptomes. Nat Commun 2017;8(1):1077. DOI: 10.1038/s41467-017-01027-z

12. Hawthorn L., Lan L., Mojica W. Evidence for field effect cancerization in colorectal cancer. Genomics 2014;103(2–3):211–21. DOI: 10.1016/j.ygeno.2013.11.003

13. Sanz-Pamplona R., Berenguer A., Cordero D. et al. Aberrant gene expression in mucosa adjacent to tumor reveals a molecular crosstalk in colon cancer. Mol Cancer 2014;13:46. DOI: 10.1186/1476-4598-13-46

14. Russi S., Calice G., Ruggieri V. et al. Gastric normal adjacent mucosa versus healthy and cancer tissues: distinctive transcriptomic profiles and biological features. Cancers (Basel) 2019;11(9):1248. DOI: 10.3390/cancers11091248

15. Bozhenko V.K., Zakharenko M.V., Goncharov S.V. et al. Phenotypic changes in morphologically normal tissue of the tumor environment. Diagnostic perspectives. Klinicheskaya laboratornaya diagnos-tika = Clinical Laboratory Diagnostics 2021;66(S4):17–8. (In Russ.).

16. Bozhenko V.K., Stanoevich U.S., Trotsenko I.D. et al. Comparison of mRNA expression of matrix metalloproteinases in morphologically normal, neoplastic and metastatic colon tissues and in biopsies of healthy donors. Biomedicinskaya himiya = Biomedical Chemistry 2018;64(1):46–52. (In Russ.).

17. Zakharenko M.V., Bozhenko V.K., Kiseleva Ya.Yu. et al. Investigation of mRNA expression profiles of genes involved in the regulation of basic cellular functions in unchanged colon epithelium in healthy donors. Biomedicinskaya himiya = Biomedical Chemistry 2021;67(4):366–73. (In Russ.).

18. Zhou L., Chu C., Teng F. et al. Innate lymphoid cells support regulatory T cells in the intestine through interleukin-2. Nature 2019;568(7752):405–9. DOI: 10.1038/s41586-019-1082-x

19. Ren L., Zhou T., Wang Y. et al. RNF8 induces β-catenin-mediated c-Myc expression and promotes colon cancer proliferation. Int J Biol Sci 2020;16(12):2051–62. DOI: 10.7150/ijbs.44119

20. Pezeshkian Z., Nobili S., Peyravian N. et al. Insights into the role of matrix metalloproteinases in precancerous conditions and in colorectal cancer. Cancers (Basel) 2021;13(24):6226. DOI: 10.3390/cancers13246226

21. Zhong S., Wyllie A.H., Barnes D. et al. Relationship between the GSTM1 genetic polymorphism and susceptibility to bladder, breast and colon cancer. Carcinogenesis 1993;14(9):1821–4. DOI: 10.1093/carcin/14.9.1821

22. Jin W.J., Xu J.M., Xu W.L. et al. Diagnostic value of interleukin-8 in colorectal cancer: a case-control study and meta-analysis. World J Gastroenterol 2014;20(43):16334–42. DOI: 10.3748/wjg.v20.i43.16334

23. Wang Q., Zhang Y., Zhu J. et al. IGF-1R inhibition induces MEK phosphorylation to promote survival in colon carcinomas. Signal Transduct Target Ther 2020;5(1):53. DOI: 10.1038/s41392-020-0204-0

24. Jaeger E., Leedham S., Lewis A. et al. Hereditary mixed polyposis syndrome is caused by a 40-kb upstream duplication that leads to increased and ectopic expression of the BMP antagonist GREM1. Nat Genet 2012;44(6):699–703. DOI: 10.1038/ng.2263

25. Zhang Y., Wang, X. Targeting the Wnt/β-catenin signaling pathway in cancer. Hematol Oncol 2020;13(1):165. DOI: 10.1186/s13045-020-00990-3


Review

For citations:


Bozhenko V. ., Goncharov S.V., Zakharenko M.V., Kiseleva Ya.Yu., Karmakova T.A., Kulinich T.M., Stanoevich U.S., Melnikova N.V., Senchukova A.L., Grunin  .B., Bliznyukov O. ., Solodky V.A. Analysis of the expression of matrix RNA of a panel of genes of morphologically unchanged rectal epithelium as a method of early diagnosis of colon pathology. Advances in Molecular Oncology. 2023;10(4):97-107. (In Russ.) https://doi.org/10.17650/2313-805X-2023-10-4-97-107

Views: 365


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2313-805X (Print)
ISSN 2413-3787 (Online)