Preview

Advances in Molecular Oncology

Advanced search

The role of transglutaminase 2 in regulation of the balance between autophagy and apoptosis in tumor cells

https://doi.org/10.17650/2313-805X-2023-10-4-31-46

Abstract

In normal tissue, cellular homeostasis is largely driven by two catabolic pathways: apoptosis and autophagy. Apoptosis, or programmed cell death, is regulated by pro-apoptotic factors, and promotes the removal of problematic cells. Autophagy, which in turn includes three forms: macro-, micro-, and chaperone-mediated autophagy, can promote both cell survival by selectively removing potentially apoptosis-inducing factors and raising the threshold of stress required for the induction of cell death. Recently, evidence has been accumulating suggesting the existence of common molecular pathways between autophagy and apoptosis, as well as the influence of the extracellular matrix on these processes. One of the important enzymes involved in the coordination and regulation of these processes is transglutaminase 2 (TG2). Different types of TG2 activities are involved in maintaining the dynamic balance between extracellular matrix and intracellular autophagy/apoptosis processes, while dysregulation of these processes may contribute to the pathogenesis of various human diseases, including oncogenesis. For example, TG2 can promote the degradation of pro-apoptotic proteins and the survival of renal cell carcinoma cells under nutrient-deficient conditions by modulating the autophagy process. In cells of various tissues deprived of TG2, aggregates of ubiquitinated proteins and damaged mitochondria are observed, which in turn induces proteotoxic stress and cell death. conversely, the transamidase activity of TG2 was observed to inhibit anti-apoptotic  signaling in a human leukemic monocytic lymphoma model. In the present review, a number of important functions of TG2 in oncogenesis are described, along with the dual role of TG2 in modulating such opposite processes as cell survival and cell death.

About the Authors

Yu.  A.  Gnennaya
Institute of Cytology of the Russian Academy of Sciences
Russian Federation

Yulia Andreevna Gnennaya.

4 Tikhoretsky Prospekt, St. Petersburg 194064



O.  M. Semenov
Institute of Cytology of the Russian Academy of Sciences
Russian Federation

4 Tikhoretsky Prospekt, St. Petersburg 194064



N. A. Barlev
Institute of Cytology of the Russian Academy of Sciences; V.N. Orekhovich Research Institute of Biomedical Chemistry
Russian Federation

4 Tikhoretsky Prospekt, St. Petersburg 194064; Bld. 8, 10 Pogodinskaya St., Moscow 119121



References

1. Brauer H.A., Makowski L., Hoadley K.A. et al. Impact of tumor microenvironment and epithelial phenotypes on metabolism in breast cancer. Clin Cancer Res 2013;19(3):571–85. DOI: 10.1158/1078-0432.CCR-12-2123

2. Lee H.-M., Lee H.-J., Chang J.-E. Inflammatory cytokine: an attractive target for cancer treatment. Biomedicines 2022;10(9):2116. DOI: 10.3390/biomedicines10092116

3. Tian H., Shi H., Yu J. et al. Biophysics role and biomimetic culture systems of ECM stiffness in cancer EMT. Global Challenges 2022;6(6):2100094. DOI: 10.1002/gch2.202100094

4. Odii B.O., Coussons P. Biological functionalities of transglutaminase 2 and the possibility of its compensation by other members of the transglutaminase family. Sci World J 2014;2014. DOI: 10.1155/2014/714561

5. Suzuki K., Ikebuchi H., Terao T. Mercuric and cadmium ions stimulate phosphorylation of band 4.2 protein on human erythrocyte membranes. J Biol Chem 1985;260(7):4526–30. DOI: 10.1016/S0021-9258(18)89295-X

6. Muszbek L., Bereczky Z., Bagoly Z. et al. Factor XIII: a coagulation factor with multiple plasmatic and cellular functions. Physiol Rev 2011;91(3):931–72. DOI: 10.1152/physrev.00016.2010

7. Kárpáti S., Sárdy M., Németh K. et al. Transglutaminases in autoimmune and inherited skin diseases: the phenomena of epitope spreading and functional compensation. Exp Dermatol 2018;27(8):807–14. DOI: 10.1111/exd.13449

8. Kiritsi D., Cosgarea I., Franzke C.-W. et al. Acral peeling skin syndrome with TGM5 gene mutations may resemble epidermolysis bullosa simplex in young individuals. J Invest Dermatol 2010;130(6):1741–6. DOI: 10.1038/jid.2010.23

9. John S., Thiebach L., Frie C. et al. Epidermal transglutaminase (TGase 3) is required for proper hair development, but not the formation of the epidermal barrier. PLoS One 2012;7(4):e34252. DOI: 10.1371/journal.pone.0034252

10. Dean M.D. Genetic disruption of the copulatory plug in mice leads to severely reduced fertility. PLoS Genet 2013;9(1):e1003185 PMID: 23341775. DOI: 10.1371/journal.pgen.1003185

11. Csobán-Szabó Z., Bécsi B., El Alaoui S. et al. Biochemical characterisation of human transglutaminase 4. Int J Mol Sci 2021;22(22):12448. DOI: 10.3390/ijms222212448

12. Schulze-Krebs A., Canneva F., Stemick J. et al. Transglutaminase 6 is colocalized and interacts with mutant huntingtin in Huntington disease rodent animal models. Int J Mol Sci 2021;22(16):8914. DOI: 10.3390/ijms22168914

13. Martin T.A., Gomez K., Watkins G. et al. Expression of breast cancer specific gene-1 (BCSG-1/γ-synuclein) is associated with tumor grade but not with clinical outcome of patients with breast cancer. Oncol Rep 2006;16(1):207–12. DOI: 10.3892/or.16.1.207

14. Soluri M.F., Boccafoschi F., Cotella D. et al. Mapping the minimum domain of the fibronectin binding site on transglutaminase 2 (TG2) and its importance in mediating signaling, adhesion, and migration in TG2‐expressing cells. FASEB J 2019;33(2):2327–42. DOI: 10.1096/fj.201800054RRR

15. Belkin A.M. Extracellular TG2: emerging functions and regulation. FEBS J 2011;278(24):4704–16. DOI: 10.1111/j.1742-4658.2011.08346.x

16. Telci D., Wang Z., Li X. et al. Fibronectin-tissue transglutaminase matrix rescues RGD-impaired cell adhesion through syndecan-4 and β1 integrin co-signaling. J Biol Chem 2008;283(30):20937–47. DOI: 10.1074/jbc.M801763200

17. Janiak A., Zemskov E.A., Belkin A.M. Cell surface transglutaminase promotes RhoA activation via integrin clustering and suppression of the Src-p190RhoGAP signaling pathway. Mol Biol Cell 2006;17(4):1606–19. DOI: 10.1091/mbc.e05-06-0549

18. Jambrovics K., Botó P., Pap A. et al. Transglutaminase 2 associated with PI3K and PTEN in a membrane-bound signalosome platform blunts cell death. Cell Death Dis 2023;14(3):217. DOI: 10.1038/s41419-023-05748-6

19. Wang Z., Perez M., Lee E.-S. et al. The functional relationship between transglutaminase 2 and transforming growth factor β1 in the regulation of angiogenesis and endothelial-mesenchymal transition. Cell Death Dis 2017;8(9):e3032-e. DOI: 10.1038/cddis.2017.399

20. Kumar S., Mehta K. Tissue transglutaminase constitutively activates HIF-1α promoter and nuclear factor-κB via a non-canonical pathway. PLoS One 2012;7(11):e49321. DOI: 10.1371/journal.pone.0049321

21. Biri B., Kiss B., Király R. et al. Metastasis-associated S100A4 is a specific amine donor and an activity-independent binding partner of transglutaminase-2. Biochem J 2016;473(1):31–42. DOI: 10.1042/BJ20150843

22. Xu D., Xu N., Sun L. et al. TG2 as a novel breast cancer prognostic marker promotes cell proliferation and glycolysis by activating the MEK/ERK/LDH pathway. BMC Cancer 2022;22(1):1267. PMID: 36471278. DOI: 10.1186/s12885-022-10364-2

23. Jia C., Wang G., Wang T. et al. Cancer-associated fibroblasts induce epithelial-mesenchymal transition via the TRANSGLUTAMINASE 2-dependent IL-6/IL6R/STAT3 axis in hepatocellular carcinoma. Int J Biol Sci 2020;16(14):2542. DOI: 10.7150/ijbs.45446

24. Rossin F., Costa R., Bordi M. et al. Transglutaminase type 2 regulates the Wnt/β-catenin pathway in vertebrates. Cell Death Dis 2021;12(3):249. DOI: 10.1038/s41419-021-03485-2

25. Reya T., Clevers H. Wnt signalling in stem cells and cancer. Nature 2005;434(7035):843–50. DOI: 10.1038/nature03319

26. Tammela T., Sanchez-Rivera F.J., Cetinbas N.M. et al. A Wnt-producing niche drives proliferative potential and progression in lung adenocarcinoma. Nature 2017;545(7654):355–9. DOI: 10.1038/nature22334

27. Huang H., Chen Z., Ni X. Tissue transglutaminase-1 promotes stemness and chemoresistance in gastric cancer cells by regulating Wnt/β-catenin signaling. Exp Biol Med 2017;242(2):194–202. DOI: 10.1177/1535370216670541

28. Thangaraju K., Király R., Demeny M.A. et al. Genomic variants reveal differential evolutionary constraints on human transglutaminases and point towards unrecognized significance of transglutaminase 2. PLoS One 2017;12(3):e0172189. DOI: 10.1371/journal.pone.0172189

29. Al-U’datt D.A.G., Tranchant C.C., Al-Husein B. et al. Involvement and possible role of transglutaminases 1 and 2 in mediating fibrotic signalling, collagen cross-linking and cell proliferation in neonatal rat ventricular fibroblasts. PLoS One 2023;18(2):e0281320. DOI: 10.1371/journal.pone.0281320

30. Fesus L., Piacentini M. Transglutaminase 2: an enigmatic enzyme with diverse functions. Trends Biochem Sci 2002;27(10):534–9. DOI: 10.1016/S0968-0004(02)02182-5

31. Mishra S., Murphy L.J. Tissue transglutaminase has intrinsic kinase activity: identification of transglutaminase 2 as an insulin-like growth factor-binding protein-3 kinase. J Biol Chem 2004;279(23):23863–8. DOI: 10.1074/jbc.M311919200

32. Akimov S.S., Belkin A.M. Cell-surface transglutaminase promotes fibronectin assembly via interaction with the gelatin-binding domain of fibronectin: a role in TGFβ-dependent matrix deposition. J Cell Sci 2001;114(16):2989–3000. DOI: 10.1242/jcs.114.16.2989

33. Liu S., Cerione R.A., Clardy J. Structural basis for the guanine nucleotide-binding activity of tissue transglutaminase and its regulation of transamidation activity. Proc Natl Acad Sci USA 2002;99(5):2743–7. DOI: 10.1073/pnas.042454899

34. Shrestha R., Tatsukawa H., Ishibashi N. et al. Molecular mechanism by which acyclic retinoid induces nuclear localization of transglutaminase 2 in human hepatocellular carcinoma cells. Cell Death Dis 2015;6(12):e2002. DOI: 10.1038/cddis.2015.339

35. Begg G.E., Carrington L., Stokes P.H. et al. Mechanism of allosteric regulation of transglutaminase 2 by GTP. Proc Natl Acad Sci USA 2006;103(52):19683–8. DOI: 10.1073/pnas.0609283103

36. Király R., Demény M., Fésüs L. Protein transamidation by transglutaminase 2 in cells: a disputed Ca2+‐dependent action of a multifunctional protein. FEBS J 2011;278(24):4717–39. DOI: 10.1111/j.1742-4658.2011.08345.x

37. Lai T.-S., Greenberg C.S. TGM2 and implications for human disease: role of alternative splicing. Front Biosci 2013;18(2):504. DOI: 10.2741/4117

38. Tee A.E., Marshall G.M., Liu P.Y. et al. Opposing effects of two tissue transglutaminase protein isoforms in neuroblastoma cell differentiation 2. J Biol Chem 2010;285(6):3561–7. DOI: 10.1074/jbc.M109.053041

39. Lai T.-S., Liu Y., Li W. et al. Identification of two GTP-independent alternatively spliced forms of tissue transglutaminase in human leukocytes, vascular smooth muscle, and endothelial cells. FASEB J 2007;21(14):4131. DOI: 10.1096/fj.06-7598com

40. Kuo T.F., Tatsukawa H., Kojima S. New insights into the functions and localization of nuclear transglutaminase 2. FEBS J 2011; 278(24):4756–67. DOI: 10.1111/j.1742-4658.2011.08409.x

41. Altuntas S., D’Eletto M., Rossin F. et al. Type 2 transglutaminase, mitochondria and Huntington’s disease: menage a trois. Mitochondrion 2014;19:97–104. DOI: 10.1016/j.mito.2014.09.008

42. Pavez-Giani M.G., Sánchez-Aguilera P.I., Bomer N. et al. Atpase inhibitory factor-1 disrupts mitochondrial Ca2+ handling and promotes pathological cardiac hypertrophy through camkiiδ. Int J Mol Sci 2021;22(9):4427. PMID: 33922643. DOI: 10.3390/ijms22094427

43. Rossin F., D’eletto M., Falasca L. et al. Transglutaminase 2 ablation leads to mitophagy impairment associated with a metabolic shift towards aerobic glycolysis. Cell Death Differ 2015;22(3):408–18. DOI: 10.1038/cdd.2014.106

44. Kawajiri S., Saiki S., Sato S. et al. PINK1 is recruited to mitochondria with parkin and associates with LC3 in mitophagy. FEBS Lett 2010;584(6):1073–9. DOI: 10.1016/j.febslet.2010.02.016

45. Lénárt K., Bankó C., Ujlaki G. et al. Tissue transglutaminase knock-out preadipocytes and beige cells of epididymal fat origin possess decreased mitochondrial functions required for thermogenesis. Int J Mol Sci 2022;23(9):5175. DOI: 10.3390/ijms23095175

46. Piacentini M., Grazia Farrace M., Piredda L. et al. Transglutaminase overexpression sensitizes neuronal cell lines to apoptosis by increasing mitochondrial membrane potential and cellular oxidative stress. J Neurochem 2002;81(5):1061–72. DOI: 10.1046/j.1471-4159.2002.00898.x

47. Rodolfo C., Mormone E., Matarrese P. et al. Tissue transglutaminase is a multifunctional BH3-only protein. J Biol Chem 2004;279(52):54783–92. DOI: 10.1074/jbc.M410938200

48. Cho S.-Y., Lee J.-H., Bae H.-D. et al. Transglutaminase 2 inhibits apoptosis induced by calciumoverload through down-regulation of Bax. Exp Mol Med 2010;42(9):639–50. DOI: 10.3858/emm.2010.42.9.063

49. D’Eletto M., Grazia Farrace M., Falasca L. et al. Transglutaminase 2 is involved in autophagosome maturation. Autophagy 2009;5(8):1145–54. DOI: 10.4161/auto.5.8.10040

50. D’Eletto M., Farrace M., Rossin F. et al. Type 2 transglutaminase is involved in the autophagy-dependent clearance of ubiquitinated proteins. Cell Death Differ 2012;19(7):1228–38. DOI: 10.1038/cdd.2012.2

51. Rossin F., D’Eletto M., Macdonald D. et al. TG2 transamidating activity acts as a reostat controlling the interplay between apoptosis and autophagy. Amino Acids 2012;42:1793–802. DOI: 10.1007/s00726-011-0899-x

52. Kang J., Lee J., Hong D. et al. Renal cell carcinoma escapes death by p53 depletion through transglutaminase 2-chaperoned autophagy. Cell Death Dis 2016;7(3):e2163. DOI: 10.1038/cddis.2016.14

53. Malkomes P., Lunger I., Oppermann E. et al. Transglutaminase 2 promotes tumorigenicity of colon cancer cells by inactivation of the tumor suppressor p53. Oncogene 2021;40(25):4352–67. DOI: 10.1038/s41388-021-01847-w

54. Lamore S.D., Wondrak G.T. Autophagic-lysosomal dysregulation downstream of cathepsin B inactivation in human skin fibroblasts exposed to UVA. Photochem Photobiol Sci 2012;11(1):163–72. DOI: 10.1039/c1pp05131h

55. Oliverio S., Amendola A., Di Sano F. et al. Tissue transglutaminase-dependent posttranslational modification of the retinoblastoma gene product in promonocytic cells undergoing apoptosis. Mol Cell Biol 1997;17(10):6040–8. DOI: 10.1128/MCB.17.10.6040

56. Mishra S., Melino G., Murphy L.J. Transglutaminase 2 kinase activity facilitates protein kinase A-induced phosphorylation of retinoblastoma protein. J Biol Chem 2007;282(25):18108–15. DOI: 10.1074/jbc.M607413200

57. Wang Y., Ande S.R., Mishra S. Phosphorylation of transglutaminase 2 (TG2) at serine-216 has a role in TG2 mediated activation of nuclear factor-kappa B and in the downregulation of PTEN. BMC Cancer 2012;12:1–12. DOI: 10.1186/1471-2407-12-277

58. Akar U., Ozpolat B., Mehta K. et al. Tissue transglutaminase inhibits autophagy in pancreatic cancer cells. Mol Cancer Res 2007;5(3):241–9. DOI: 10.1158/1541-7786.MCR-06-0229

59. Park K.-S., Han B.-G., Lee K.H. et al. Depletion of nucleophosmin via transglutaminase 2 cross-linking increases drug resistance in cancer cells. Cancer Lett 2009;274(2):201–7. DOI: 10.1016/j.canlet.2008.09.007

60. Wu J., Wang J., Wang L. et al. Topical retinoic acid induces corneal strengthening by upregulating transglutaminase 2 in murine cornea. Exp Eye Res 2022;214:108850. DOI: 10.1016/j.exer.2021.108850

61. Kuncio G.S., Tsyganskaya M., Zhu J. et al. TNF-α modulates expression of the tissue transglutaminase gene in liver cells. Am J Physiol 1998;274(2):G240–5. DOI: 10.1152/ajpgi.1998.274.2.G240

62. Brown K.D. Transglutaminase 2 and NF-κB: an odd couple that shapes breast cancer phenotype. Breast Cancer Res Treat 2013;137(2):329–36. DOI: 10.1007/s10549-012-2351-7

63. Jang G.-Y., Jeon J.-H., Cho S.-Y. et al. Transglutaminase 2 suppresses apoptosis by modulating caspase 3 and NF-κB activity in hypoxic tumor cells. Oncogene 2010;29(3):356–67. DOI: 10.1038/onc.2009.342

64. Suto N., Ikura K., Sasaki R. Expression induced by interleukin-6 of tissue-type transglutaminase in human hepatoblastoma HepG2 cells. J Biol Chem 1993;268(10):7469–73.

65. Bayardo M., Punzi F., Bondar C. et al. Transglutaminase 2 expression is enhanced synergistically by interferon-γ and tumor necrosis factor-α in human small intestine. Clin Exp Immunol 2012;168(1):95–104. DOI: 10.1111/j.1365-2249.2011.04545.x

66. Piacentini M., D’Eletto M., Farrace M.G. et al. Characterization of distinct sub-cellular location of transglutaminase type II: changes in intracellular distribution in physiological and pathological states. Cell Tissue Res 2014;358(3):793–805. DOI: 10.1007/s00441-014-1990-x

67. Mishra S., Saleh A., Espino P.S. et al. Phosphorylation of histones by tissue transglutaminase. J Biol Chem 2006;281(9):5532–8. DOI: 10.1074/jbc.M506864200

68. Ballestar E., Abad C., Franco L. Core histones are glutaminyl substrates for tissue transglutaminase. J Biol Chem 1996;271(31):18817–24. DOI: 10.1074/jbc.271.31.18817

69. Parzych K.R., Klionsky D.J. An overview of autophagy: morphology, mechanism, and regulation. Antioxid Redox Signal 2014;20(3):460–73. DOI: 10.1089/ars.2013.5371

70. Lu G., Wang Y., Shi Y. et al. Autophagy in health and disease: from molecular mechanisms to therapeutic target. MedComm 2022;3(3):e150. DOI: 10.1002/mco2.150

71. Bhutia S.K., Mukhopadhyay S., Sinha N. et al. Autophagy: cancer’s friend or foe? Adv Cancer Res 2013;118:61–95. DOI: 10.1016/B978-0-12-407173-5.00003-0

72. Su M., Mei Y., Sinha S. Role of the crosstalk between autophagy and apoptosis in cancer. J Oncol 2013;2013:102735. DOI: 10.1155/2013/102735

73. Kroemer G., Levine B. Autophagic cell death: the story of a misnomer. Nat Rev Mol Cell Biol 2008;9(12):1004–10. DOI: 10.1038/nrm2527

74. Maiuri M.C., Tasdemir E., Criollo A. et al. Control of autophagy by oncogenes and tumor suppressor genes. Cell Death Differ 2009;16(1):87–93. DOI: 10.1038/cdd.2008.131

75. Galluzzi L., Vitale I., Aaronson S.A. et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ 2018;25(3):486–541. DOI: 10.1038/s41418-017-0012-4

76. Singh R., Letai A., Sarosiek K. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat Rev Mol Cell Biol 2019;20(3):175–93. DOI: 10.1038/s41580-018-0089-8

77. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol 2007;35(4):495–516. DOI: 10.1080/01926230701320337

78. Chaitanya G.V., Alexander J.S., Babu P.P. PARP-1 cleavage fragments: signatures of cell-death proteases in neurodegeneration. Cell Commun Signal 2010;8:1–11. DOI: 10.1186/1478-811X-8-31

79. Aubrey B.J., Kelly G.L., Janic A. et al. How does p53 induce apoptosis and how does this relate to p53-mediated tumor suppression? Cell Death Differ 2018;25(1):104–13. DOI: 10.1038/cdd.2017.169

80. Fan Y., Ullman E., Zong W.-X. The cellular decision between apoptosis and autophagy. Beyond Apoptosis 2008:141–56. DOI: 10.5732/cjc.012.10106

81. Villella V.R., Esposito S., Bruscia E.M. et al. Targeting the intracellular environment in cystic fibrosis: restoring autophagy as a novel strategy to circumvent the CFTR defect. Front Pharmacol 2013;4:1. DOI: 10.3389/fphar.2013.00001

82. Boehm J.E., Singh U., Combs C. et al. Tissue transglutaminase protects against apoptosis by modifying the tumor suppressor protein p110 Rb. J Biol Chem 2002;277(23):20127–30. DOI: 10.1074/jbc.C200147200

83. Han J.A., Park S.C. Transglutaminase-dependent modulation of transcription factor Sp1 activity. Mol Cells 2000;10:612–8. DOI: 10.1007/s10059-000-0612-5

84. Tatsukawa H., Sano T., Fukaya Y. et al. Dual induction of caspase 3- and transglutaminase-dependent apoptosis by acyclic retinoid in hepatocellular carcinoma cells. Mol Cancer 2011;10:1–11. DOI: 10.1186/1476-4598-10-4

85. Yamaguchi H., Wang H.-G. Tissue transglutaminase serves as an inhibitor of apoptosis by cross-linking caspase 3 in thapsigargin-treated cells. Mol Cell Biol 2006;26(2):569–79. DOI: 10.1128/MCB.26.2.569-579.2006

86. Chène P. Inhibiting the p53–MDM2 interaction: an important target for cancer therapy. Nat Rev Cancer 2003;3(2):102–9. DOI: 10.1038/nrc991

87. Kang J.H., Lee S.-H., Cheong H. et al. Transglutaminase 2 promotes autophagy by LC3 induction through p53 depletion in cancer cell. Biomol Ther (Seoul) 2019;27(1):34. DOI: 10.4062/biomolther.2018.140

88. Lee S.-H., Kang J.H., Ha J.S. et al. Transglutaminase 2-mediated p53 depletion promotes angiogenesis by increasing HIF-1α-p300 binding in renal cell carcinoma. Int J Mol Sci 2020;21(14):5042. DOI: 10.3390/ijms21145042

89. Xia L., Tan S., Zhou Y. et al. Role of the NFκB-signaling pathway in cancer. Onco Targets Ther 2018:2063–73. DOI: 10.2147/OTT.S161109

90. Lee J., Kim Y.-S., Choi D.-H. et al. Transglutaminase 2 induces nuclear factor-κB activation via a novel pathway in BV-2 microglia. J Biol Chem 2004;279(51):53725–35. DOI: 10.1074/jbc.M407627200

91. Kim J., Lee S., Park J. et al. TNF-α-induced ROS production triggering apoptosis is directly linked to Romo1 and Bcl-XL. Cell Death Differ 2010;17(9):1420–34. DOI: 10.1038/cdd.2010.19

92. Verma A., Guha S., Wang H. et al. Tissue transglutaminase regulates focal adhesion kinase/AKT activation by modulating PTEN expression in pancreatic cancer cells. Clin Cancer Res 2008;14(7):1997–2005. DOI: 10.1158/1078-0432.CCR-07-1533

93. D’Eletto M., Rossin F., Fedorova O. et al. Transglutaminase type 2 in the regulation of proteostasis. Biol Chem 2019;400(2):125–40. DOI: 10.1515/hsz-2018-0217

94. Gagliardi M., Saverio V., Rossin F. et al. Transglutaminase 2 and ferroptosis: a new liaison? Cell Death Discov 2023;9(1):88. DOI: 10.1038/s41420-023-01394-1

95. Erdem M., Erdem S., Sanli O. et al. Up-regulation of TGM2 with ITGB1 and SDC4 is important in the development and metastasis of renal cell carcinoma. Urol Oncol 2014;32(1):25e13–25.

96. Erdem S., Yegen G., Telci D. et al. The increased transglutaminase 2 expression levels during initial tumorigenesis predict increased risk of metastasis and decreased disease-free and cancer-specific survivals in renal cell carcinoma. World J Urol 2015;33(10):1553–60. DOI: 10.1007/s00345-014-1462-7

97. Park M.J., Baek H.W., Rhee Y.-Y. et al. Transglutaminase 2 expression and its prognostic significance in clear cell renal cell carcinoma. J Pathol Trans Med 2015;49(1):37–43. DOI: 10.4132/jptm.2014.10.25

98. Gupta S., Garg S., Kumar V. et al. Study of tumor transglutaminase 2 expression in gallbladder cancer – is it a novel predictor of survival? Ann Hepatobiliary Pancreat Surg 2020;24(4):460–8. DOI: 10.14701/ahbps.2020.24.4.460

99. Wang X., Yu Z., Zhou Q. et al. Tissue transglutaminase-2 promotes gastric cancer progression via the ERK1/2 pathway. Oncotarget 2016;7(6):7066. DOI: 10.18632/oncotarget.6883

100. Cho S.-Y., Oh Y., Jeong E.M. et al. Amplification of transglutaminase 2 enhances tumor-promoting inflammation in gastric cancers. Exp Mol Med 2020;52(5):854–64. DOI: 10.1038/s12276-020-0444-7

101. Leicht D.T., Kausar T., Wang Z. et al. TGM2: a cell surface marker in esophageal adenocarcinomas. J Thorac Oncol 2014;9(6):872–81. DOI: 10.1097/JTO.0000000000000229

102. Kausar T., Sharma R., Hasan M.R. et al. Clinical significance of GPR56, transglutaminase 2, and NF-κB in esophageal squamous cell carcinoma. Cancer Invest 2011;29(1):42–8. DOI: 10.3109/07357907.2010.512597

103. Jin T., Lin H.-X., Lin H. et al. Expression TGM2 and BNIP3 have prognostic significance in laryngeal cancer patients receiving surgery and postoperative radiotherapy: a retrospective study. J Transl Med 2012;10:1–9. DOI: 10.1186/1479-5876-10-64

104. Miyoshi N., Ishii H., Mimori K. et al. TGM2 is a novel marker for prognosis and therapeutic target in colorectal cancer. Ann Surg Oncol 2010;17(4):967–72. DOI: 10.1245/s10434-009-0865-y

105. Fernández-Aceñero M.J., Torres S., Garcia-Palmero I. et al. Prognostic role of tissue transglutaminase 2 in colon carcinoma. Virchows Arch 2016;469(6):611–9. DOI: 10.1007/s00428-016-2020-z

106. Torres A., Pac-Sosińska M., Wiktor K. et al. CD44, TGM2 and EpCAM as novel plasma markers in endometrial cancer diagnosis. BMC Cancer 2019;19(1):1–11. DOI: 10.1186/s12885-019-5556-x

107. Lan T., Mu C., Wang Z. et al. Diagnostic and prognostic values of serum EpCAM, TGM2, and HE4 levels in endometrial cancer. Front Oncol 2020;10:1697. DOI: 10.3389/fonc.2020.01697

108. Lehrer S., Rheinstein P.H. Druggable genetic targets in endometrial cancer. Cancer Treat Res Commun 2022;30:100502. DOI: 10.1016/j.ctarc.2021.100502

109. Huang Y.-C., Wei K.-C., Chang C.-N. et al. Transglutaminase 2 expression is increased as a function of malignancy grade and negatively regulates cell growth in meningioma. PLoS One 2014;9(9):e108228. DOI: 10.1371/journal.pone.0108228

110. Harb O.A., Elsayed W.S., Ismail E.I. et al. Thioredoxin-interacting-protein [TXNIP] and transglutaminase 2 [TGM2] expression in meningiomas of different grades and the role of their expression in meningioma recurrence and prognosis. Asian Pac J Cancer Prev 2017;18(8):2299. DOI: 10.22034/APJCP.2017.18.8.2299

111. Zheng W., Chen Q., Liu H. et al. SDC1-dependent TGM2 determines radiosensitivity in glioblastoma by coordinating EPG5-mediated fusion of autophagosomes with lysosomes. Autophagy 2023;19(3):839–57. DOI: 10.1080/15548627.2022.2105562

112. Muccioli S., Ciaccio R., Brillo V. et al. Promising prognostic value of transglutaminase type 2 and its correlation with tumor-infiltrating immune cells in skin cutaneous melanoma. Cell Death Discov 2022;8(1):294. DOI: 10.1038/s41420-022-01087-1

113. Pierce A., Whetton A.D., Meyer S. et al. Transglutaminase 2 expression in acute myeloid leukemia: association with adhesion molecule expression and leukemic blast motility. Proteomics 2013;13(14):2216–24. DOI: 10.1002/pmic.201200471

114. Mohammadzadeh Z., Omidkhoda A., Chahardouli B. et al. The impact of ICAM-1, CCL2 and TGM2 gene polymorphisms on differentiation syndrome in acute promyelocytic leukemia. BMC Cancer 2021;21(1):1–7. DOI: 10.1186/s12885-021-07783-y

115. Jeong J.-H., Cho B.C., Shim H.S. et al. Transglutaminase 2 expression predicts progression free survival in non-small cell lung cancer patients treated with epidermal growth factor receptor tyrosine kinase inhibitor. J Korean Med Sci 2013;28(7):1005–14. DOI: 10.3346/jkms.2013.28.7.1005

116. Chihong Z., Yutian L., Danying W. et al. Prognostic value of transglutaminase 2 in non-small cell lung cancer patients. Oncotarget 2017;8(28):45577. DOI: 10.18632/oncotarget.17374

117. Assi J., Srivastava G., Matta A. et al. Transglutaminase 2 overexpression in tumor stroma identifies invasive ductal carcinomas of breast at high risk of recurrence. PLoS One 2013;8(9):e74437. DOI: 10.1371/journal.pone.0074437

118. Mangala L.S., Arun B., Sahin A.A. et al. Tissue transglutaminase-induced alterations in extracellular matrix inhibit tumor invasion. Mol Cancer 2005;4(1):1–8. DOI: 10.1186/1476-4598-4-33

119. Oh K., Ko E., Kim H.S. et al. Transglutaminase 2 facilitates the distant hematogenous metastasis of breast cancer by modulating interleukin-6 in cancer cells. Breast Cancer Res 2011;13(5):1–12. DOI: 10.1186/bcr3034

120. Gao J., Wang S., Wan H. et al. Prognostic value of transglutaminase 2 in patients with solid tumors: a meta-analysis. Genet Test Mol Biomarkers 2023;27(2):36–43. DOI: 10.1089/gtmb.2022.0088


Review

For citations:


Gnennaya Yu.A., Semenov O.M., Barlev N.A. The role of transglutaminase 2 in regulation of the balance between autophagy and apoptosis in tumor cells. Advances in Molecular Oncology. 2023;10(4):31-46. (In Russ.) https://doi.org/10.17650/2313-805X-2023-10-4-31-46

Views: 408


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2313-805X (Print)
ISSN 2413-3787 (Online)