Роль трансглутаминазы 2 в регуляции баланса между аутофагией и апоптозом в опухолевых клетках
https://doi.org/10.17650/2313-805X-2023-10-4-31-46
Аннотация
В нормальной ткани клеточный гомеостаз в значительной степени обусловлен двумя катаболическими путями: апоптозом и аутофагией. Апоптоз, или запрограммированная клеточная гибель, регулируется проапоптотическими факторами и способствует уничтожению поврежденных клеток. Аутофагия, в свою очередь, включающая в себя 3 формы – макро-, микро- и шаперон-опосредованную аутофагию, – может как способствовать выживанию клеток путем избирательного удаления факторов, потенциально вызывающих апоптоз, так и повышать порог стресса, необходимого для индукции клеточной гибели. В последнее время накапливаются данные, свидетельствующие о существовании общих молекулярных путей между аутофагией и апоптозом, а также о влиянии каспазного матрикса на данные процессы. Одним из важных ферментов, участвующих в координации и регуляции этих процессов, является трансглутаминаза 2 (TG2). Различные типы активностей TG2 вовлечены в поддержание динамического баланса между внутриклеточным матриксом и внутриклеточными процессами аутофагии/апоптоза, в то время как их дерегуляция может способствовать развитию патогенеза различных заболеваний человека, включая онкогенез. Например, известно, что TG2 может благоприятствовать деградации проапоптотических белков и выживанию клеток почечно-клеточной карциномы в условиях недостатка питательных веществ, модулируя процесс аутофагии. В клетках различных тканей, лишенных TG2, наблюдается скопление агрегатов убиквитинированных белков и поврежденных митохондрий, что вызывает протеотоксический стресс и клеточную смерть. Наоборот, трансамидазная активность TG2 была замечена в ингибировании антиапоптотических сигналов на модели лейкемической моноцитарной лимфомы человека. В данном обзоре описываются важные функции TG2 в онкогенезе, а также подчеркивается двойственность роли этого фермента в модуляции таких противоположных процессов, как выживание клеток и их гибель.
Об авторах
Ю. А. ГненнаяРоссия
Юлия Андреевна Гненная.
194064 Санкт-Петербург, Тихорецкий проспект, 4
О. М. Семёнов
Россия
194064 Санкт-Петербург, Тихорецкий проспект, 4
Н. А. Барлев
Россия
194064 Санкт-Петербург, Тихорецкий проспект, 4; 119121 Москва, ул. Погодинская, 10, стр. 8
Список литературы
1. Brauer H.A., Makowski L., Hoadley K.A. et al. Impact of tumor microenvironment and epithelial phenotypes on metabolism in breast cancer. Clin Cancer Res 2013;19(3):571–85. DOI: 10.1158/1078-0432.CCR-12-2123
2. Lee H.-M., Lee H.-J., Chang J.-E. Inflammatory cytokine: an attractive target for cancer treatment. Biomedicines 2022;10(9):2116. DOI: 10.3390/biomedicines10092116
3. Tian H., Shi H., Yu J. et al. Biophysics role and biomimetic culture systems of ECM stiffness in cancer EMT. Global Challenges 2022;6(6):2100094. DOI: 10.1002/gch2.202100094
4. Odii B.O., Coussons P. Biological functionalities of transglutaminase 2 and the possibility of its compensation by other members of the transglutaminase family. Sci World J 2014;2014. DOI: 10.1155/2014/714561
5. Suzuki K., Ikebuchi H., Terao T. Mercuric and cadmium ions stimulate phosphorylation of band 4.2 protein on human erythrocyte membranes. J Biol Chem 1985;260(7):4526–30. DOI: 10.1016/S0021-9258(18)89295-X
6. Muszbek L., Bereczky Z., Bagoly Z. et al. Factor XIII: a coagulation factor with multiple plasmatic and cellular functions. Physiol Rev 2011;91(3):931–72. DOI: 10.1152/physrev.00016.2010
7. Kárpáti S., Sárdy M., Németh K. et al. Transglutaminases in autoimmune and inherited skin diseases: the phenomena of epitope spreading and functional compensation. Exp Dermatol 2018;27(8):807–14. DOI: 10.1111/exd.13449
8. Kiritsi D., Cosgarea I., Franzke C.-W. et al. Acral peeling skin syndrome with TGM5 gene mutations may resemble epidermolysis bullosa simplex in young individuals. J Invest Dermatol 2010;130(6):1741–6. DOI: 10.1038/jid.2010.23
9. John S., Thiebach L., Frie C. et al. Epidermal transglutaminase (TGase 3) is required for proper hair development, but not the formation of the epidermal barrier. PLoS One 2012;7(4):e34252. DOI: 10.1371/journal.pone.0034252
10. Dean M.D. Genetic disruption of the copulatory plug in mice leads to severely reduced fertility. PLoS Genet 2013;9(1):e1003185 PMID: 23341775. DOI: 10.1371/journal.pgen.1003185
11. Csobán-Szabó Z., Bécsi B., El Alaoui S. et al. Biochemical characterisation of human transglutaminase 4. Int J Mol Sci 2021;22(22):12448. DOI: 10.3390/ijms222212448
12. Schulze-Krebs A., Canneva F., Stemick J. et al. Transglutaminase 6 is colocalized and interacts with mutant huntingtin in Huntington disease rodent animal models. Int J Mol Sci 2021;22(16):8914. DOI: 10.3390/ijms22168914
13. Martin T.A., Gomez K., Watkins G. et al. Expression of breast cancer specific gene-1 (BCSG-1/γ-synuclein) is associated with tumor grade but not with clinical outcome of patients with breast cancer. Oncol Rep 2006;16(1):207–12. DOI: 10.3892/or.16.1.207
14. Soluri M.F., Boccafoschi F., Cotella D. et al. Mapping the minimum domain of the fibronectin binding site on transglutaminase 2 (TG2) and its importance in mediating signaling, adhesion, and migration in TG2‐expressing cells. FASEB J 2019;33(2):2327–42. DOI: 10.1096/fj.201800054RRR
15. Belkin A.M. Extracellular TG2: emerging functions and regulation. FEBS J 2011;278(24):4704–16. DOI: 10.1111/j.1742-4658.2011.08346.x
16. Telci D., Wang Z., Li X. et al. Fibronectin-tissue transglutaminase matrix rescues RGD-impaired cell adhesion through syndecan-4 and β1 integrin co-signaling. J Biol Chem 2008;283(30):20937–47. DOI: 10.1074/jbc.M801763200
17. Janiak A., Zemskov E.A., Belkin A.M. Cell surface transglutaminase promotes RhoA activation via integrin clustering and suppression of the Src-p190RhoGAP signaling pathway. Mol Biol Cell 2006;17(4):1606–19. DOI: 10.1091/mbc.e05-06-0549
18. Jambrovics K., Botó P., Pap A. et al. Transglutaminase 2 associated with PI3K and PTEN in a membrane-bound signalosome platform blunts cell death. Cell Death Dis 2023;14(3):217. DOI: 10.1038/s41419-023-05748-6
19. Wang Z., Perez M., Lee E.-S. et al. The functional relationship between transglutaminase 2 and transforming growth factor β1 in the regulation of angiogenesis and endothelial-mesenchymal transition. Cell Death Dis 2017;8(9):e3032-e. DOI: 10.1038/cddis.2017.399
20. Kumar S., Mehta K. Tissue transglutaminase constitutively activates HIF-1α promoter and nuclear factor-κB via a non-canonical pathway. PLoS One 2012;7(11):e49321. DOI: 10.1371/journal.pone.0049321
21. Biri B., Kiss B., Király R. et al. Metastasis-associated S100A4 is a specific amine donor and an activity-independent binding partner of transglutaminase-2. Biochem J 2016;473(1):31–42. DOI: 10.1042/BJ20150843
22. Xu D., Xu N., Sun L. et al. TG2 as a novel breast cancer prognostic marker promotes cell proliferation and glycolysis by activating the MEK/ERK/LDH pathway. BMC Cancer 2022;22(1):1267. PMID: 36471278. DOI: 10.1186/s12885-022-10364-2
23. Jia C., Wang G., Wang T. et al. Cancer-associated fibroblasts induce epithelial-mesenchymal transition via the TRANSGLUTAMINASE 2-dependent IL-6/IL6R/STAT3 axis in hepatocellular carcinoma. Int J Biol Sci 2020;16(14):2542. DOI: 10.7150/ijbs.45446
24. Rossin F., Costa R., Bordi M. et al. Transglutaminase type 2 regulates the Wnt/β-catenin pathway in vertebrates. Cell Death Dis 2021;12(3):249. DOI: 10.1038/s41419-021-03485-2
25. Reya T., Clevers H. Wnt signalling in stem cells and cancer. Nature 2005;434(7035):843–50. DOI: 10.1038/nature03319
26. Tammela T., Sanchez-Rivera F.J., Cetinbas N.M. et al. A Wnt-producing niche drives proliferative potential and progression in lung adenocarcinoma. Nature 2017;545(7654):355–9. DOI: 10.1038/nature22334
27. Huang H., Chen Z., Ni X. Tissue transglutaminase-1 promotes stemness and chemoresistance in gastric cancer cells by regulating Wnt/β-catenin signaling. Exp Biol Med 2017;242(2):194–202. DOI: 10.1177/1535370216670541
28. Thangaraju K., Király R., Demeny M.A. et al. Genomic variants reveal differential evolutionary constraints on human transglutaminases and point towards unrecognized significance of transglutaminase 2. PLoS One 2017;12(3):e0172189. DOI: 10.1371/journal.pone.0172189
29. Al-U’datt D.A.G., Tranchant C.C., Al-Husein B. et al. Involvement and possible role of transglutaminases 1 and 2 in mediating fibrotic signalling, collagen cross-linking and cell proliferation in neonatal rat ventricular fibroblasts. PLoS One 2023;18(2):e0281320. DOI: 10.1371/journal.pone.0281320
30. Fesus L., Piacentini M. Transglutaminase 2: an enigmatic enzyme with diverse functions. Trends Biochem Sci 2002;27(10):534–9. DOI: 10.1016/S0968-0004(02)02182-5
31. Mishra S., Murphy L.J. Tissue transglutaminase has intrinsic kinase activity: identification of transglutaminase 2 as an insulin-like growth factor-binding protein-3 kinase. J Biol Chem 2004;279(23):23863–8. DOI: 10.1074/jbc.M311919200
32. Akimov S.S., Belkin A.M. Cell-surface transglutaminase promotes fibronectin assembly via interaction with the gelatin-binding domain of fibronectin: a role in TGFβ-dependent matrix deposition. J Cell Sci 2001;114(16):2989–3000. DOI: 10.1242/jcs.114.16.2989
33. Liu S., Cerione R.A., Clardy J. Structural basis for the guanine nucleotide-binding activity of tissue transglutaminase and its regulation of transamidation activity. Proc Natl Acad Sci USA 2002;99(5):2743–7. DOI: 10.1073/pnas.042454899
34. Shrestha R., Tatsukawa H., Ishibashi N. et al. Molecular mechanism by which acyclic retinoid induces nuclear localization of transglutaminase 2 in human hepatocellular carcinoma cells. Cell Death Dis 2015;6(12):e2002. DOI: 10.1038/cddis.2015.339
35. Begg G.E., Carrington L., Stokes P.H. et al. Mechanism of allosteric regulation of transglutaminase 2 by GTP. Proc Natl Acad Sci USA 2006;103(52):19683–8. DOI: 10.1073/pnas.0609283103
36. Király R., Demény M., Fésüs L. Protein transamidation by transglutaminase 2 in cells: a disputed Ca2+‐dependent action of a multifunctional protein. FEBS J 2011;278(24):4717–39. DOI: 10.1111/j.1742-4658.2011.08345.x
37. Lai T.-S., Greenberg C.S. TGM2 and implications for human disease: role of alternative splicing. Front Biosci 2013;18(2):504. DOI: 10.2741/4117
38. Tee A.E., Marshall G.M., Liu P.Y. et al. Opposing effects of two tissue transglutaminase protein isoforms in neuroblastoma cell differentiation 2. J Biol Chem 2010;285(6):3561–7. DOI: 10.1074/jbc.M109.053041
39. Lai T.-S., Liu Y., Li W. et al. Identification of two GTP-independent alternatively spliced forms of tissue transglutaminase in human leukocytes, vascular smooth muscle, and endothelial cells. FASEB J 2007;21(14):4131. DOI: 10.1096/fj.06-7598com
40. Kuo T.F., Tatsukawa H., Kojima S. New insights into the functions and localization of nuclear transglutaminase 2. FEBS J 2011; 278(24):4756–67. DOI: 10.1111/j.1742-4658.2011.08409.x
41. Altuntas S., D’Eletto M., Rossin F. et al. Type 2 transglutaminase, mitochondria and Huntington’s disease: menage a trois. Mitochondrion 2014;19:97–104. DOI: 10.1016/j.mito.2014.09.008
42. Pavez-Giani M.G., Sánchez-Aguilera P.I., Bomer N. et al. Atpase inhibitory factor-1 disrupts mitochondrial Ca2+ handling and promotes pathological cardiac hypertrophy through camkiiδ. Int J Mol Sci 2021;22(9):4427. PMID: 33922643. DOI: 10.3390/ijms22094427
43. Rossin F., D’eletto M., Falasca L. et al. Transglutaminase 2 ablation leads to mitophagy impairment associated with a metabolic shift towards aerobic glycolysis. Cell Death Differ 2015;22(3):408–18. DOI: 10.1038/cdd.2014.106
44. Kawajiri S., Saiki S., Sato S. et al. PINK1 is recruited to mitochondria with parkin and associates with LC3 in mitophagy. FEBS Lett 2010;584(6):1073–9. DOI: 10.1016/j.febslet.2010.02.016
45. Lénárt K., Bankó C., Ujlaki G. et al. Tissue transglutaminase knock-out preadipocytes and beige cells of epididymal fat origin possess decreased mitochondrial functions required for thermogenesis. Int J Mol Sci 2022;23(9):5175. DOI: 10.3390/ijms23095175
46. Piacentini M., Grazia Farrace M., Piredda L. et al. Transglutaminase overexpression sensitizes neuronal cell lines to apoptosis by increasing mitochondrial membrane potential and cellular oxidative stress. J Neurochem 2002;81(5):1061–72. DOI: 10.1046/j.1471-4159.2002.00898.x
47. Rodolfo C., Mormone E., Matarrese P. et al. Tissue transglutaminase is a multifunctional BH3-only protein. J Biol Chem 2004;279(52):54783–92. DOI: 10.1074/jbc.M410938200
48. Cho S.-Y., Lee J.-H., Bae H.-D. et al. Transglutaminase 2 inhibits apoptosis induced by calciumoverload through down-regulation of Bax. Exp Mol Med 2010;42(9):639–50. DOI: 10.3858/emm.2010.42.9.063
49. D’Eletto M., Grazia Farrace M., Falasca L. et al. Transglutaminase 2 is involved in autophagosome maturation. Autophagy 2009;5(8):1145–54. DOI: 10.4161/auto.5.8.10040
50. D’Eletto M., Farrace M., Rossin F. et al. Type 2 transglutaminase is involved in the autophagy-dependent clearance of ubiquitinated proteins. Cell Death Differ 2012;19(7):1228–38. DOI: 10.1038/cdd.2012.2
51. Rossin F., D’Eletto M., Macdonald D. et al. TG2 transamidating activity acts as a reostat controlling the interplay between apoptosis and autophagy. Amino Acids 2012;42:1793–802. DOI: 10.1007/s00726-011-0899-x
52. Kang J., Lee J., Hong D. et al. Renal cell carcinoma escapes death by p53 depletion through transglutaminase 2-chaperoned autophagy. Cell Death Dis 2016;7(3):e2163. DOI: 10.1038/cddis.2016.14
53. Malkomes P., Lunger I., Oppermann E. et al. Transglutaminase 2 promotes tumorigenicity of colon cancer cells by inactivation of the tumor suppressor p53. Oncogene 2021;40(25):4352–67. DOI: 10.1038/s41388-021-01847-w
54. Lamore S.D., Wondrak G.T. Autophagic-lysosomal dysregulation downstream of cathepsin B inactivation in human skin fibroblasts exposed to UVA. Photochem Photobiol Sci 2012;11(1):163–72. DOI: 10.1039/c1pp05131h
55. Oliverio S., Amendola A., Di Sano F. et al. Tissue transglutaminase-dependent posttranslational modification of the retinoblastoma gene product in promonocytic cells undergoing apoptosis. Mol Cell Biol 1997;17(10):6040–8. DOI: 10.1128/MCB.17.10.6040
56. Mishra S., Melino G., Murphy L.J. Transglutaminase 2 kinase activity facilitates protein kinase A-induced phosphorylation of retinoblastoma protein. J Biol Chem 2007;282(25):18108–15. DOI: 10.1074/jbc.M607413200
57. Wang Y., Ande S.R., Mishra S. Phosphorylation of transglutaminase 2 (TG2) at serine-216 has a role in TG2 mediated activation of nuclear factor-kappa B and in the downregulation of PTEN. BMC Cancer 2012;12:1–12. DOI: 10.1186/1471-2407-12-277
58. Akar U., Ozpolat B., Mehta K. et al. Tissue transglutaminase inhibits autophagy in pancreatic cancer cells. Mol Cancer Res 2007;5(3):241–9. DOI: 10.1158/1541-7786.MCR-06-0229
59. Park K.-S., Han B.-G., Lee K.H. et al. Depletion of nucleophosmin via transglutaminase 2 cross-linking increases drug resistance in cancer cells. Cancer Lett 2009;274(2):201–7. DOI: 10.1016/j.canlet.2008.09.007
60. Wu J., Wang J., Wang L. et al. Topical retinoic acid induces corneal strengthening by upregulating transglutaminase 2 in murine cornea. Exp Eye Res 2022;214:108850. DOI: 10.1016/j.exer.2021.108850
61. Kuncio G.S., Tsyganskaya M., Zhu J. et al. TNF-α modulates expression of the tissue transglutaminase gene in liver cells. Am J Physiol 1998;274(2):G240–5. DOI: 10.1152/ajpgi.1998.274.2.G240
62. Brown K.D. Transglutaminase 2 and NF-κB: an odd couple that shapes breast cancer phenotype. Breast Cancer Res Treat 2013;137(2):329–36. DOI: 10.1007/s10549-012-2351-7
63. Jang G.-Y., Jeon J.-H., Cho S.-Y. et al. Transglutaminase 2 suppresses apoptosis by modulating caspase 3 and NF-κB activity in hypoxic tumor cells. Oncogene 2010;29(3):356–67. DOI: 10.1038/onc.2009.342
64. Suto N., Ikura K., Sasaki R. Expression induced by interleukin-6 of tissue-type transglutaminase in human hepatoblastoma HepG2 cells. J Biol Chem 1993;268(10):7469–73.
65. Bayardo M., Punzi F., Bondar C. et al. Transglutaminase 2 expression is enhanced synergistically by interferon-γ and tumor necrosis factor-α in human small intestine. Clin Exp Immunol 2012;168(1):95–104. DOI: 10.1111/j.1365-2249.2011.04545.x
66. Piacentini M., D’Eletto M., Farrace M.G. et al. Characterization of distinct sub-cellular location of transglutaminase type II: changes in intracellular distribution in physiological and pathological states. Cell Tissue Res 2014;358(3):793–805. DOI: 10.1007/s00441-014-1990-x
67. Mishra S., Saleh A., Espino P.S. et al. Phosphorylation of histones by tissue transglutaminase. J Biol Chem 2006;281(9):5532–8. DOI: 10.1074/jbc.M506864200
68. Ballestar E., Abad C., Franco L. Core histones are glutaminyl substrates for tissue transglutaminase. J Biol Chem 1996;271(31):18817–24. DOI: 10.1074/jbc.271.31.18817
69. Parzych K.R., Klionsky D.J. An overview of autophagy: morphology, mechanism, and regulation. Antioxid Redox Signal 2014;20(3):460–73. DOI: 10.1089/ars.2013.5371
70. Lu G., Wang Y., Shi Y. et al. Autophagy in health and disease: from molecular mechanisms to therapeutic target. MedComm 2022;3(3):e150. DOI: 10.1002/mco2.150
71. Bhutia S.K., Mukhopadhyay S., Sinha N. et al. Autophagy: cancer’s friend or foe? Adv Cancer Res 2013;118:61–95. DOI: 10.1016/B978-0-12-407173-5.00003-0
72. Su M., Mei Y., Sinha S. Role of the crosstalk between autophagy and apoptosis in cancer. J Oncol 2013;2013:102735. DOI: 10.1155/2013/102735
73. Kroemer G., Levine B. Autophagic cell death: the story of a misnomer. Nat Rev Mol Cell Biol 2008;9(12):1004–10. DOI: 10.1038/nrm2527
74. Maiuri M.C., Tasdemir E., Criollo A. et al. Control of autophagy by oncogenes and tumor suppressor genes. Cell Death Differ 2009;16(1):87–93. DOI: 10.1038/cdd.2008.131
75. Galluzzi L., Vitale I., Aaronson S.A. et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ 2018;25(3):486–541. DOI: 10.1038/s41418-017-0012-4
76. Singh R., Letai A., Sarosiek K. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat Rev Mol Cell Biol 2019;20(3):175–93. DOI: 10.1038/s41580-018-0089-8
77. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol 2007;35(4):495–516. DOI: 10.1080/01926230701320337
78. Chaitanya G.V., Alexander J.S., Babu P.P. PARP-1 cleavage fragments: signatures of cell-death proteases in neurodegeneration. Cell Commun Signal 2010;8:1–11. DOI: 10.1186/1478-811X-8-31
79. Aubrey B.J., Kelly G.L., Janic A. et al. How does p53 induce apoptosis and how does this relate to p53-mediated tumor suppression? Cell Death Differ 2018;25(1):104–13. DOI: 10.1038/cdd.2017.169
80. Fan Y., Ullman E., Zong W.-X. The cellular decision between apoptosis and autophagy. Beyond Apoptosis 2008:141–56. DOI: 10.5732/cjc.012.10106
81. Villella V.R., Esposito S., Bruscia E.M. et al. Targeting the intracellular environment in cystic fibrosis: restoring autophagy as a novel strategy to circumvent the CFTR defect. Front Pharmacol 2013;4:1. DOI: 10.3389/fphar.2013.00001
82. Boehm J.E., Singh U., Combs C. et al. Tissue transglutaminase protects against apoptosis by modifying the tumor suppressor protein p110 Rb. J Biol Chem 2002;277(23):20127–30. DOI: 10.1074/jbc.C200147200
83. Han J.A., Park S.C. Transglutaminase-dependent modulation of transcription factor Sp1 activity. Mol Cells 2000;10:612–8. DOI: 10.1007/s10059-000-0612-5
84. Tatsukawa H., Sano T., Fukaya Y. et al. Dual induction of caspase 3- and transglutaminase-dependent apoptosis by acyclic retinoid in hepatocellular carcinoma cells. Mol Cancer 2011;10:1–11. DOI: 10.1186/1476-4598-10-4
85. Yamaguchi H., Wang H.-G. Tissue transglutaminase serves as an inhibitor of apoptosis by cross-linking caspase 3 in thapsigargin-treated cells. Mol Cell Biol 2006;26(2):569–79. DOI: 10.1128/MCB.26.2.569-579.2006
86. Chène P. Inhibiting the p53–MDM2 interaction: an important target for cancer therapy. Nat Rev Cancer 2003;3(2):102–9. DOI: 10.1038/nrc991
87. Kang J.H., Lee S.-H., Cheong H. et al. Transglutaminase 2 promotes autophagy by LC3 induction through p53 depletion in cancer cell. Biomol Ther (Seoul) 2019;27(1):34. DOI: 10.4062/biomolther.2018.140
88. Lee S.-H., Kang J.H., Ha J.S. et al. Transglutaminase 2-mediated p53 depletion promotes angiogenesis by increasing HIF-1α-p300 binding in renal cell carcinoma. Int J Mol Sci 2020;21(14):5042. DOI: 10.3390/ijms21145042
89. Xia L., Tan S., Zhou Y. et al. Role of the NFκB-signaling pathway in cancer. Onco Targets Ther 2018:2063–73. DOI: 10.2147/OTT.S161109
90. Lee J., Kim Y.-S., Choi D.-H. et al. Transglutaminase 2 induces nuclear factor-κB activation via a novel pathway in BV-2 microglia. J Biol Chem 2004;279(51):53725–35. DOI: 10.1074/jbc.M407627200
91. Kim J., Lee S., Park J. et al. TNF-α-induced ROS production triggering apoptosis is directly linked to Romo1 and Bcl-XL. Cell Death Differ 2010;17(9):1420–34. DOI: 10.1038/cdd.2010.19
92. Verma A., Guha S., Wang H. et al. Tissue transglutaminase regulates focal adhesion kinase/AKT activation by modulating PTEN expression in pancreatic cancer cells. Clin Cancer Res 2008;14(7):1997–2005. DOI: 10.1158/1078-0432.CCR-07-1533
93. D’Eletto M., Rossin F., Fedorova O. et al. Transglutaminase type 2 in the regulation of proteostasis. Biol Chem 2019;400(2):125–40. DOI: 10.1515/hsz-2018-0217
94. Gagliardi M., Saverio V., Rossin F. et al. Transglutaminase 2 and ferroptosis: a new liaison? Cell Death Discov 2023;9(1):88. DOI: 10.1038/s41420-023-01394-1
95. Erdem M., Erdem S., Sanli O. et al. Up-regulation of TGM2 with ITGB1 and SDC4 is important in the development and metastasis of renal cell carcinoma. Urol Oncol 2014;32(1):25e13–25.
96. Erdem S., Yegen G., Telci D. et al. The increased transglutaminase 2 expression levels during initial tumorigenesis predict increased risk of metastasis and decreased disease-free and cancer-specific survivals in renal cell carcinoma. World J Urol 2015;33(10):1553–60. DOI: 10.1007/s00345-014-1462-7
97. Park M.J., Baek H.W., Rhee Y.-Y. et al. Transglutaminase 2 expression and its prognostic significance in clear cell renal cell carcinoma. J Pathol Trans Med 2015;49(1):37–43. DOI: 10.4132/jptm.2014.10.25
98. Gupta S., Garg S., Kumar V. et al. Study of tumor transglutaminase 2 expression in gallbladder cancer – is it a novel predictor of survival? Ann Hepatobiliary Pancreat Surg 2020;24(4):460–8. DOI: 10.14701/ahbps.2020.24.4.460
99. Wang X., Yu Z., Zhou Q. et al. Tissue transglutaminase-2 promotes gastric cancer progression via the ERK1/2 pathway. Oncotarget 2016;7(6):7066. DOI: 10.18632/oncotarget.6883
100. Cho S.-Y., Oh Y., Jeong E.M. et al. Amplification of transglutaminase 2 enhances tumor-promoting inflammation in gastric cancers. Exp Mol Med 2020;52(5):854–64. DOI: 10.1038/s12276-020-0444-7
101. Leicht D.T., Kausar T., Wang Z. et al. TGM2: a cell surface marker in esophageal adenocarcinomas. J Thorac Oncol 2014;9(6):872–81. DOI: 10.1097/JTO.0000000000000229
102. Kausar T., Sharma R., Hasan M.R. et al. Clinical significance of GPR56, transglutaminase 2, and NF-κB in esophageal squamous cell carcinoma. Cancer Invest 2011;29(1):42–8. DOI: 10.3109/07357907.2010.512597
103. Jin T., Lin H.-X., Lin H. et al. Expression TGM2 and BNIP3 have prognostic significance in laryngeal cancer patients receiving surgery and postoperative radiotherapy: a retrospective study. J Transl Med 2012;10:1–9. DOI: 10.1186/1479-5876-10-64
104. Miyoshi N., Ishii H., Mimori K. et al. TGM2 is a novel marker for prognosis and therapeutic target in colorectal cancer. Ann Surg Oncol 2010;17(4):967–72. DOI: 10.1245/s10434-009-0865-y
105. Fernández-Aceñero M.J., Torres S., Garcia-Palmero I. et al. Prognostic role of tissue transglutaminase 2 in colon carcinoma. Virchows Arch 2016;469(6):611–9. DOI: 10.1007/s00428-016-2020-z
106. Torres A., Pac-Sosińska M., Wiktor K. et al. CD44, TGM2 and EpCAM as novel plasma markers in endometrial cancer diagnosis. BMC Cancer 2019;19(1):1–11. DOI: 10.1186/s12885-019-5556-x
107. Lan T., Mu C., Wang Z. et al. Diagnostic and prognostic values of serum EpCAM, TGM2, and HE4 levels in endometrial cancer. Front Oncol 2020;10:1697. DOI: 10.3389/fonc.2020.01697
108. Lehrer S., Rheinstein P.H. Druggable genetic targets in endometrial cancer. Cancer Treat Res Commun 2022;30:100502. DOI: 10.1016/j.ctarc.2021.100502
109. Huang Y.-C., Wei K.-C., Chang C.-N. et al. Transglutaminase 2 expression is increased as a function of malignancy grade and negatively regulates cell growth in meningioma. PLoS One 2014;9(9):e108228. DOI: 10.1371/journal.pone.0108228
110. Harb O.A., Elsayed W.S., Ismail E.I. et al. Thioredoxin-interacting-protein [TXNIP] and transglutaminase 2 [TGM2] expression in meningiomas of different grades and the role of their expression in meningioma recurrence and prognosis. Asian Pac J Cancer Prev 2017;18(8):2299. DOI: 10.22034/APJCP.2017.18.8.2299
111. Zheng W., Chen Q., Liu H. et al. SDC1-dependent TGM2 determines radiosensitivity in glioblastoma by coordinating EPG5-mediated fusion of autophagosomes with lysosomes. Autophagy 2023;19(3):839–57. DOI: 10.1080/15548627.2022.2105562
112. Muccioli S., Ciaccio R., Brillo V. et al. Promising prognostic value of transglutaminase type 2 and its correlation with tumor-infiltrating immune cells in skin cutaneous melanoma. Cell Death Discov 2022;8(1):294. DOI: 10.1038/s41420-022-01087-1
113. Pierce A., Whetton A.D., Meyer S. et al. Transglutaminase 2 expression in acute myeloid leukemia: association with adhesion molecule expression and leukemic blast motility. Proteomics 2013;13(14):2216–24. DOI: 10.1002/pmic.201200471
114. Mohammadzadeh Z., Omidkhoda A., Chahardouli B. et al. The impact of ICAM-1, CCL2 and TGM2 gene polymorphisms on differentiation syndrome in acute promyelocytic leukemia. BMC Cancer 2021;21(1):1–7. DOI: 10.1186/s12885-021-07783-y
115. Jeong J.-H., Cho B.C., Shim H.S. et al. Transglutaminase 2 expression predicts progression free survival in non-small cell lung cancer patients treated with epidermal growth factor receptor tyrosine kinase inhibitor. J Korean Med Sci 2013;28(7):1005–14. DOI: 10.3346/jkms.2013.28.7.1005
116. Chihong Z., Yutian L., Danying W. et al. Prognostic value of transglutaminase 2 in non-small cell lung cancer patients. Oncotarget 2017;8(28):45577. DOI: 10.18632/oncotarget.17374
117. Assi J., Srivastava G., Matta A. et al. Transglutaminase 2 overexpression in tumor stroma identifies invasive ductal carcinomas of breast at high risk of recurrence. PLoS One 2013;8(9):e74437. DOI: 10.1371/journal.pone.0074437
118. Mangala L.S., Arun B., Sahin A.A. et al. Tissue transglutaminase-induced alterations in extracellular matrix inhibit tumor invasion. Mol Cancer 2005;4(1):1–8. DOI: 10.1186/1476-4598-4-33
119. Oh K., Ko E., Kim H.S. et al. Transglutaminase 2 facilitates the distant hematogenous metastasis of breast cancer by modulating interleukin-6 in cancer cells. Breast Cancer Res 2011;13(5):1–12. DOI: 10.1186/bcr3034
120. Gao J., Wang S., Wan H. et al. Prognostic value of transglutaminase 2 in patients with solid tumors: a meta-analysis. Genet Test Mol Biomarkers 2023;27(2):36–43. DOI: 10.1089/gtmb.2022.0088
Рецензия
Для цитирования:
Гненная Ю.А., Семёнов О.М., Барлев Н.А. Роль трансглутаминазы 2 в регуляции баланса между аутофагией и апоптозом в опухолевых клетках. Успехи молекулярной онкологии. 2023;10(4):31-46. https://doi.org/10.17650/2313-805X-2023-10-4-31-46
For citation:
Gnennaya Yu.A., Semenov O.M., Barlev N.A. The role of transglutaminase 2 in regulation of the balance between autophagy and apoptosis in tumor cells. Advances in Molecular Oncology. 2023;10(4):31-46. (In Russ.) https://doi.org/10.17650/2313-805X-2023-10-4-31-46