Preview

Успехи молекулярной онкологии

Расширенный поиск

Молекулярные особенности гастроинтестинальных стромальных опухолей «дикого типа» (KIT/PDGFRA WT)

https://doi.org/10.17650/2313-805X-2023-10-4-61-75

Аннотация

Гастроинтестинальные стромальные опухоли (ГИСО) – наиболее распространенные мезенхимальные опухоли желудочно-кишечного тракта. Их основными признаками являются экспрессия cD117 (KIT) и мутации в генах KIT или PDGFRA у 85 % пациентов. Однако 10–15 % ГИСО взрослых и 85 % ГИСО детей не имеют мутаций KIT/PDGFRA (ГИСО KIT/PDGFRA WT, или ГИСО «дикого типа»). Прогноз и клиническое течение этих опухолей и ГИСО с мутациями KIT/PDGFRA различаются. Гастроинтестинальные стромальные опухоли «дикого типа» довольно гетерогенная группа опухолей по клиническому фенотипу, генетической этиологии и по молекулярным путям. Гастроинтестинальные стромальные опухоли разделяют на SDH-дефицитные и SDH-компетентные по комплексу сукцинатдегидрогеназы (SDH). SDH-дефицитные ГИСО встречаются преимущественно у детей и молодых пациентов с синдромом Карни–Стратакиса и триадой Карни, есть и спорадические опухоли. Более 50 % SDH-дефицитных ГИСО содержат мутации в генах SDHA, SDHB, SDHD, SDHC, а остальные вызваны гиперметилированием промотора SDHC. SDH-компетентные ГИСО «дикого типа» включают опухоли с мутациями  BRAF, RAS или NF1, которые активируют RAS-RAF-MAPK-путь и подтип ГИСО KIT/PDGFRA/SDH/RAS-P WT, или ГИСО «четырежды дикого типа». Профили генома этих опухолей и ГИСО с мутацией KIT/PDGFRA или дефицитом SDH значительно различаются. Одной из особенностей ГИСО «четырежды дикого типа» является активация  FGFR-сигнального пути (FGFR – рецепторы фактора роста фибробластов) из-за химерных генов FGFR, мутаций FGFR или гиперэкспрессии фактора роста фибробластов (FGF). Еще одной особенностью являются химерные гены, содержащие фрагменты генов NTRK, BRAFFGFR и других, которые ведут себя как онкогены-драйверы. В ГИСО «четырежды дикого типа» выявлены соматические мутации генов TP53, MAX, MEN1, CTNND2, CHD4, ARIDIA  и других, а также генов клеточного цикла RB1, CDK4, CDKN1B. Специфического лечения для пациентов с ГИСО «дикого типа» не существует, выбор препарата обусловлен генетическим нарушением. Необходимо совершенствовать понимание молекулярных механизмов, лежащих в основе различных подтипов ГИСО, для разработки более эффективных терапевтических подходов.

Об авторах

Н. Н. Мазуренко
ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина» Минздрава России
Россия

Мазуренко Наталья Николаевна.

115522 Москва, Каширское шоссе, 24



В. В. Югай
ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина» Минздрава России
Россия

115522 Москва, Каширское шоссе, 24



И. В. Цыганова
ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина» Минздрава России
Россия

115522 Москва, Каширское шоссе, 24



Список литературы

1. Miettinen M., Lasota J. Gastrointestinal stromal tumors. Gastroenterol Clin North Am 2013;42(2):399–415. DOI: 10.1016/j.gtc.2013.01.001

2. Joensuu H., Hohenberger P., Corless C.L. Gastrointestinal stromal tumor. Lancet 2013;382(9896):973–83. DOI: 10.1016/S0140-6736(13)60106-3

3. Мазуренко Н.Н., Цыганова И.В. Генетические особенности и маркеры гастроинтестинальных стромальных опухолей. В кн.: Молекулярный канцерогенез. М.: АБВ-пресс, 2016. C. 300–321.

4. Мазуренко Н.Н., Югай В.В., Цыганова И.В. и др. Молекулярная гетерогенность и анализ отдаленной выживаемости пациентов с гастроинтестинальными стромальными опухолями. Успехи молекулярной онкологии 2022;9(2):43–57. DOI: 0.17650/2313-805X-2022-9-2-43-57

5. Blay J.Y., Kang Y.K., Nishida T., von Mehren M. Gastrointestinal stromal tumors. Nat Rev Dis Primers 2021;7(1):22. DOI: 10.1038/s41572-021-00254-5

6. Søreide K., Sandvik O.M., Søreide J.A. et al. Global epidemiology of gastrointestinal stromal tumors (GIST): a systematic review of population-based cohort studies. Cancer Epidemiol 2016;40:39–46. DOI: 10.1016/j.canep.2015.10.031

7. Hirota S., Isozaki K., Moriyama Y. et al. Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science 1998;279(5350):577–80. DOI: 10.1126/science.279.5350.577

8. Hirota S., Ohashi A., Nishida T. et al. Gain-of-function mutations of platelet-derived growth factor receptor alpha gene in gastrointestinal stromal tumors.Gastroenterology 2003;125(3):660–7. DOI: 10.1016/s0016-5085(03)01046-1.

9. Heinrich M.C., Corless C.L., Duensing A. et al. PDGFRA activating mutations in gastrointestinal stromal tumors. Science 2003;299(5607):708–10. DOI: 10.1126/science.1079666

10. Joensuu H., Roberts P.J., Sarlomo-Rikala M. et al. Effect of the tyrosine kinase inhibitor STI571 in a patient with a metastatic gastrointestinal stromal tumor. N Engl J Med 2001;344(14):1052–6. DOI: 10.1056/NEJM200104053441404

11. Ding H., Yu X., Yu Y. et al. Clinical significance of the molecular heterogeneity of gastrointestinal stromal tumors and related research: a systematic review. Oncol Rep 2020;43(3):751–64. DOI: 10.3892/or.2020.7470

12. Huang W.K., Wu C.E., Wang S.Y. et al. Systemic therapy for gastrointestinal stromal tumor: current standards and emerging challenges. Curr Treat Options Oncol 2022;23(9):1303–19. DOI: 10.1007/s11864-022-00996-8

13. Nannini M., Biasco G., Astolfi A., Pantaleo M.A. An overview on molecular biology of KIT/PDGFRA wild type (WT) gastrointestinal stromal tumors (GIST). J Med Genet 2013;50(10):653–61. DOI: 10.1136/jmedgenet-2013-101695

14. Boikos S.A., Stratakis C.A. The genetic landscape of gastrointestinal stromal tumor lacking KIT and PDGFRA mutations. Endocrine 2014;47(2):401–8. DOI: 10.1007/s12020-014-0346-3

15. Wada R., Arai H., Kure S. et al. “Wild type” GIST: clinicopathological features and clinical practice. Pathol Int 2016;66(8):431–7. DOI: 10.1111/pin.12431

16. Boikos S.A., Pappo A.S., Killian J.K. et al. Molecular subtypes of KIT/PDGFRA wild-type gastrointestinal stromal tumors: a report from the National Institutes of Health Gastrointestinal Stromal Tumor Clinic. JAMA Oncol 2016;2(7):922–8. DOI: 10.1001/jamaoncol.2016.0256

17. Andrzejewska M., Czarny J., Derwich K. Latest advances in the management of pediatric gastrointestinal stromal tumors. Cancers (Basel) 2022;14(20):4989. DOI: 10.3390/cancers14204989

18. Wu C.E., Tzen C.Y., Wang S.Y., Yeh C.N. Clinical diagnosis of gastrointestinal stromal tumor (GIST): from the molecular genetic point of view. Cancers (Basel) 2019;11(5):679. DOI: 10.3390/cancers11050679

19. Rutter J., Winge D.R., Schiffman J.D. Succinate dehydrogenase – assembly, regulation and role in human disease. Mitochondrion 2010;10(4):393–401. DOI: 10.1016/j.mito.2010.03.001

20. Niinuma T., Suzuki H., Sugai T. Molecular characterization and pathogenesis of gastrointestinal stromal tumor. Transl Gastroenterol Hepatol 2018;3:2. DOI: 10.21037/tgh.2018.01.02

21. Janeway K.A., Kim S.Y., Lodish M. et al. Defects in succinate dehydrogenase in gastrointestinal stromal tumors lacking KIT and PDGFRA mutations. Proc Natl Acad Sci USA 2011;108(1):314–8. DOI: 10.1073/pnas.1009199108.

22. Boikos S.A., Xekouki P., Fumagalli E. et al. Carney triad can be (rarely) associated with germline succinate dehydrogenase defects. Eur J Hum Genet 2016;24(4):569–73. DOI: 10.1038/ejhg.2015.142

23. Chou A., Chen J., Clarkson A. et al. Succinate dehydrogenase-deficient GISTs are characterized by IGF1R overexpression. Mod Pathol 2012;25(9):1307–13. DOI: 10.1038/modpathol.2012.77

24. Mason E.F., Hornick J.L. Succinate dehydrogenase deficiency is associated with decreased 5-hydroxymethyl cytosine production in gastrointestinal stromal tumors: implications for mechanisms of tumorigenesis. Mod Pathol 2013;26(11):1492–7. DOI: 10.1038/modpathol.2013.86

25. Schipani A., Nannini M., Astolfi A., Pantaleo M.A. SDHA germline mutations in SDH-deficient GISTs: a current update. Genes (Basel) 2023;14(3):646. DOI: 10.3390/genes14030646

26. Carney J.A. Gastric stromal sarcoma, pulmonary chondroma, and extra-adrenal paraganglioma (Carney Triad): natural history, adrenocortical component, and possible familial occurrence. Mayo Clin Proc 1999;74(6):543–52. DOI: 10.4065/74.6.543

27. Zhang L., Smyrk T.C., Young W.F.Jr. et al. Gastric stromal tumors in Carney triad are different clinically, pathologically, and behaviorally from sporadic gastric gastrointestinal stromal tumors: findings in 104 cases. Am J Surg Pathol 2010;34(1):53–64. DOI: 10.1097/PAS.0b013e3181c20f4f

28. Carney J.A., Stratakis C.A. Familial paraganglioma and gastric stromal sarcoma: a new syndrome distinct from the Carney triad. Am J Med Genet 2002;108(2):132–9. DOI: 10.1002/ajmg.10235

29. Pasini B., McWhinney S.R., Bei T. et al. Clinical and molecular genetics of patients with the Carney–Stratakis syndrome and germline mutations of the genes coding for the succinate dehydrogenase subunits SDHB, SDHC, and SDHD. Eur J Hum Genet 2008;16(1):79–88. DOI: 10.1038/sj.ejhg.5201904

30. Gaal J., Stratakis C.A., Carney J.A. et al. SDHB immunohistochemistry: a useful tool in the diagnosis of Carney– Stratakis and Carney triad gastrointestinal stromal tumors. Mod Pathol 2011;24(1):147–51. DOI: 10.1038/modpathol.2010.185

31. Югай В.В., Никулин М.П., Козлов Н.А. и др. Клинико-морфологические характеристики пациентов с гастроинтестинальной стромальной опухолью с дефицитом сукцинатдегидрогеназы. Вопросы онкологии 2022;68(5):614–21. DOI: 10.37469/0507-3758-2022-68-5-614-621

32. Dwight T., Benn D.E., Clarkson A. et al. Loss of SDHA expression identifies SDHA mutations in succinate dehydrogenase-deficient gastrointestinal stromal tumors. Am J Surg Pathol 2013;37(2):226–33. DOI: 10.1097/PAS.0b013e3182671155

33. Miettinen M., Killian J.K., Wang Z.F. et al. Immunohistochemical loss of succinate dehydrogenase subunit A (SDHA) in gastrointestinal stromal tumors (GISTs) signals SDHA germline mutation. Am J Surg Pathol 2013;37(2):234–40. DOI: 10.1097/PAS.0b013e3182671178

34. Pantaleo M.A., Lolli C., Nannini M. et al. Good survival outcome of metastatic SDH-deficient gastrointestinal stromal tumors harboring SDHA mutations. Genet Med 2015;17(5):391–5. DOI: 10.1038/gim.2014.115

35. von Mehren M., George S., Heinrich M.C. et al. Linsitinib (OSI-906) for the treatment of adult and pediatric wild-type gastrointestinal stromal tumors, a SARC phase II study. Clin Cancer Res 2020;26(8):1837–45. DOI: 10.1158/1078-0432.CCR-19-1069

36. Haller F., Moskalev E.A., Faucz F.R. et al. Aberrant DNA hypermethylation of SDHC: a novel mechanism of tumor development in Carney triad. Endocr Relat Cancer 2014;21(4): 567–77. DOI: 10.1530/ERC-14-0254

37. Killian J.K., Miettinen M., Walker R.L. et al. Recurrent epimutation of SDHC in gastrointestinal stromal tumors. Sci Transl Med 2014;6(268):268ra177. DOI: 10.1126/scitranslmed.3009961

38. Agaram N.P., Wong G.C., Guo T. et al. Novel V600E BRAF mutations in imatinib-naive and imatinib-resistant gastrointestinal stromal tumors. Genes Chromosomes Cancer 2008;47(10):853–9. DOI: 10.1002/gcc.20589

39. Agaimy A., Terracciano L.M., Dirnhofer S. et al. V600E BRAF mutations are alternative early molecular events in a subset of KIT/ PDGFRA wild-type gastrointestinal stromal tumors. J Clin Pathol 2009;62(7):613–6. DOI: 10.1136/jcp.2009.064550

40. Huss S., Pasternack H., Ihle M.A. et al. Clinicopathological and molecular features of a large cohort of gastrointestinal stromal tumors (GISTs) and review of the literature: BRAF mutations in KIT/PDGFRA wild-type GISTs are rare events. Hum Pathol 2017;62:206–14. DOI: 10.1016/j.humpath.2017.01.005

41. Miranda C., Nucifora M., Molinari F. et al. KRAS and BRAF mutations predict primary resistance to imatinib in gastrointestinal stromal tumors. Clin Cancer Res 2012;18(6):1769–76. DOI: 10.1158/1078-0432.CCR-11-2230

42. Franck C., Rosania R., Franke S. et al. The BRAF status may predict response to sorafenib in gastrointestinal stromal tumors resistant to imatinib, sunitinib, and regorafenib: case series and review of the literature. Digestion 2019;99(2):179–84. DOI: 10.1159/000490886

43. Falchook G.S., Trent J.C., Heinrich M.C. et al. BRAF mutant gastrointestinal stromal tumor: first report of regression with BRAF inhibitor dabrafenib (GSK2118436) and whole exomic sequencing for analysis of acquired resistance. Oncotarget 2013;4(2):310–5. DOI: 10.18632/oncotarget.864

44. Crona D.J., Keisler M.D., Walko C.M. Regorafenib: a novel multitargeted tyrosine kinase inhibitor for colorectal cancer and gastrointestinal stromal tumors. Ann Pharmacother 2013;47(12):1685–96. DOI: 10.1177/1060028013509792

45. Rossi S., Sbaraglia M., Dell’Orto M.C. et al. Concomitant KIT/BRAF and PDGFRA/BRAF mutations are rare events in gastrointestinal stromal tumors. Oncotarget 2016;7(21):30109–18. DOI: 10.18632/oncotarget.8768

46. Guo J., Ge Q., Yang F. et al. Small gastric stromal tumors: an underestimated risk. Cancers (Basel) 2022;14(23):6008. DOI: 10.3390/cancers14236008

47. Lasota J., Xi L., Coates T. et al. No KRAS mutations found in gastrointestinal stromal tumors (GISTs): molecular genetic study of 514 cases. Mod Pathol 2013;26(11):1488–91. DOI: 10.1038/modpathol.2013.89

48. Antonescu C.R., Romeo S., Zhang L et al. Dedifferentiation in gastrointestinal stromal tumor to an anaplastic KIT-negative phenotype: a diagnostic pitfall: morphologic and molecular characterization of 8 cases occurring either de novo or after imatinib therapy. Am J Surg Pathol 2013;37(3):385–92. DOI: 10.1097/PAS.0b013e31826c1761

49. Serrano C., Wang Y., Mariño-Enríquez A. et al. KRAS and KIT gatekeeper mutations confer polyclonal primary imatinib resistance in GI stromal tumors: relevance of concomitant phosphatidylinositol 3-kinase/AKT dysregulation. J Clin Oncol 2015;33(22):e93–6. DOI: 10.1200/JCO.2013.48.7488

50. Hechtman J.F., Zehir A., Mitchell T. et al. Novel oncogene and tumor suppressor mutations in KIT and PDGFRA wild type gastrointestinal stromal tumors revealed by next generation sequencing. Genes Chromosomes Cancer 2015;54(3):177–84. DOI: 10.1002/gcc.22230

51. Chen Q., Li R., Zhang Z.G. et al. Oncogene mutational analysis in Chinese gastrointestinal stromal tumor patients. Onco Targets Ther 2018;11:2279–86. DOI: 10.2147/OTT.S155214

52. Miettinen M., Fetsch J.F., Sobin L.H., Lasota J. Gastrointestinal stromal tumors in patients with neurofibromatosis 1: a clinicopathologic and molecular genetic study of 45 cases. Am J Surg Pathol 2006;30(1):90–6. DOI: 10.1097/01.pas.0000176433.81079.bd

53. Mussi C., Schildhaus H.U., Gronchi A. et al. Therapeutic consequences from molecular biology for gastrointestinal stromal tumor patients affected by neurofibromatosis type 1. Clin Cancer Res 2008;14(14):4550–5. DOI: 10.1158/1078-0432.CCR-08-0086

54. Gutmann D.H., Ferner R.E., Listernick R.H. et al. Neurofibromatosis type 1. Nat Rev Dis Primers 2017;3:17004. DOI: 10.1038/nrdp.2017.4. PMID: 28230061

55. Gasparotto D., Rossi S., Polano M. et al. Quadruple-negative GIST is a sentinel for unrecognized neurofibromatosis type 1 syndrome. Clin Cancer Res 2017;23(1):273–82. DOI: 10.1158/1078-0432.CCR-16-0152

56. Belinsky M.G., Rink L., Cai K.Q. et al. Somatic loss of function mutations in neurofibromin 1 and MYC associated factor X genes identified by exome-wide sequencing in a wild-type GIST case. BMC Cancer 2015;15:887. DOI: 10.1186/s12885-015-1872-y

57. Wu J., Zhou H., Yi X. et al. Targeted Deep sequencing reveals unrecognized KIT mutation coexistent with NF1 deficiency in GISTs. Cancer Manag Res 2021;13:297–306. DOI: 10.2147/CMAR.S280174

58. Shi S.S., Wu N., He Y. et al. EGFR gene mutation in gastrointestinal stromal tumors. Histopathology 2017;71(4):553–61. DOI: 10.1111/his.13251

59. Lasota J., Felisiak-Golabek A., Wasag B. et al. Frequency and clinicopathologic profile of PIK3CA mutant GISTs: molecular genetic study of 529 cases. Mod Pathol 2016;29(3):275–82. DOI: 10.1038/modpathol.2015.160

60. Quattrone A., Wozniak A., Dewaele B. et al. Frequent mono-allelic loss associated with deficient PTEN expression in imatinib-resistant gastrointestinal stromal tumors. Mod Pathol 2014;27(11):1510–20. DOI: 10.1038/modpathol.2014.53

61. Lasota J., Kowalik A., Felisiak-Golabek A. et al. New mechanisms of mTOR pathway activation in KIT-mutant malignant GISTs. Appl Immunohistochem Mol Morphol 2019;27(1):54–8. DOI: 10.1097/PAI.0000000000000541

62. Pantaleo M.A., Nannini M., Corless C.L., Heinrich MC. Quadruple wild-type (WT) GIST: defining the subset of GIST that lacks abnormalities of KIT, PDGFRA, SDH, or RAS signaling pathways. Cancer Med 2015;4(1):101–3. DOI: 10.1002/cam4.325

63. Shi E., Chmielecki J., Tang C.M. et al. FGFR1 and NTRK3 actionable alterations in “Wild-Type” gastrointestinal stromal tumors. J Transl Med 2016;14(1):339. DOI: 10.1186/s12967-016-1075-6

64. Urbini M., Indio V., Tarantino G. et al. Gain of FGF4 is a frequent event in KIT/PDGFRA/SDH/RAS-P WT GIST. Genes Chromosomes Cancer 2019;58(9):636–42. DOI: 10.1002/gcc.22753

65. Astolfi A., Pantaleo M.A., Indio V. et al. The Emerging role of the FGF/FGFR pathway in gastrointestinal stromal tumor. Int J Mol Sci 2020;21(9):3313. DOI: 10.3390/ijms21093313

66. Napolitano A., Ostler A.E., Jones R.L., Huang P.H. Fibroblast growth factor receptor (FGFR) signaling in GIST and soft tissue sarcomas. Cells 2021;10(6):1533. DOI: 10.3390/cells10061533

67. Pantaleo M.A., Urbini M., Indio V. et al. Genome-wide analysis identifies MEN1 and MAX mutations and a neuroendocrine-like molecular heterogeneity in Quadruple WT GIST. Mol Cancer Res 2017;15(5):553–62. DOI: 10.1158/1541-7786.MCR-16-0376

68. Flavahan W.A., Drier Y., Johnstone S.E. et al. Altered chromosomal topology drives oncogenic programs in SDH-deficient GISTs. Nature 2019;575(7781):229–33. DOI: 10.1038/s41586-019-1668-3

69. Javidi-Sharifi N., Traer E., Martinez J. et al. Crosstalk between KIT and FGFR3 promotes gastrointestinal stromal tumor cell growth and drug resistance. Cancer Res 2015;75(5):880–91. DOI: 10.1158/0008-5472.CAN-14-0573

70. Li F., Huynh H., Li X. et al. FGFR-mediated reactivation of MAPK signaling attenuates antitumor effects of imatinib in gastrointestinal stromal tumors. Cancer Discov 2015;5(4):438–51. DOI: 10.1158/2159-8290.CD-14-0763

71. Boichuk S., Galembikova A., Dunaev P. et al. A novel receptor tyrosine kinase switch promotes gastrointestinal stromal tumor drug resistance. Molecules 2017;22(12):2152. DOI: 10.3390/molecules22122152

72. Boichuk S., Galembikova A., Mikheeva E. et al. Inhibition of FGF2-mediated signaling in GIST-promising approach for overcoming resistance to imatinib. Cancers (Basel) 2020;12(6):1674. DOI: 10.3390/cancers12061674

73. Brenca M., Rossi S., Polano M. et al. Transcriptome sequencing identifies ETV6-NTRK3 as a gene fusion involved in GIST. J Pathol 2016;238(4):543–9. DOI: 10.1002/path.4677

74. Kheder E.S., Hong D.S. Emerging targeted therapy for tumors with NTRK fusion proteins. Clin Cancer Res 2018;24(23):5807–14. DOI: 10.1158/1078-0432.CCR-18-1156

75. Demetri G.D., Antonescu C.R., Bjerkehagen B. et al. Diagnosis and management of tropomyosin receptor kinase (TRK) fusion sarcomas: expert recommendations from the World Sarcoma Network. Ann Oncol 2020;31(11):1506–17. DOI: 10.1016/j.annonc.2020.08.2232

76. Brčić I., Godschachner T.M., Bergovec M. et al. Broadening the spectrum of NTRK rearranged mesenchymal tumors and usefulness of pan-TRK immunohistochemistry for identification of NTRK fusions. Mod Pathol 2021;34(2):396–407. DOI: 10.1038/s41379-020-00657-x

77. Castillon M., Kammerer-Jacquet S.F., Cariou M. et al. Fluorescent in situ hybridization must be preferred to pan-TRK immunohistochemistry to diagnose NTRK3-rearranged gastrointestinal stromal tumors (GIST). Appl Immunohistochem Mol Morphol 2021;29(8):626–34. DOI: 10.1097/PAI.0000000000000933

78. Drilon A. TRK inhibitors in TRK fusion-positive cancers. Ann Oncol 2019;30(8):viii23–30. DOI: 10.1093/annonc/mdz282

79. Hong D.S., DuBois S.G., Kummar S. et al. Larotrectinib in patients with TRK fusion-positive solid tumors: a pooled analysis of three phase 1/2 clinical trials. Lancet Oncol 2020;21(4):531–40. DOI: 10.1016/S1470-2045(19)30856-3

80. Drilon A., Ou S.I., Cho B.C. et al. Repotrectinib (TPX-0005) is a next-generation ROS1/TRK/ALK inhibitor that potently inhibits ROS1/TRK/ALK solvent-front mutations. Cancer Discov 2018;8(10):1227–36. DOI: 10.1158/2159-8290.CD-18-0484

81. Charo L.M., Burgoyne A.M., Fanta P.T. et al. A Novel PRKAR1B-BRAF fusion in gastrointestinal stromal tumor guides adjuvant treatment decision-making during pregnancy. J Natl Compr Canc Netw 2018;16(3):238–42. DOI: 10.6004/jnccn.2017.7039

82. Torrence D., Xie Z., Zhang L. et al. Gastrointestinal stromal tumors with BRAF gene fusions. A report of two cases showing low or absent KIT expression resulting in diagnostic pitfalls. Genes Chromosomes Cancer 2021;60(12):789–95. DOI: 10.1002/gcc.22991

83. Vanden Bempt I., Vander Borght S., Sciot R. et al. Comprehensive targeted next-generation sequencing approach in the molecular diagnosis of gastrointestinal stromal tumor. Genes Chromosomes Cancer 2021;60(4):239–49. DOI: 10.1002/gcc.22923

84. Cho W.C., Shin Y.K., Na Y.S. et al. The role of novel fusion genes in human GIST cell lines derived from imatinib-resistant GIST patients: a therapeutic potential of fusion gene. Biochem Biophys Res Commun 2020;529(3):699–706. DOI: 10.1016/j.bbrc.2020.05.174

85. Kang G., Yun H., Sun C.H. et al. Integrated genomic analyses identify frequent gene fusion events and VHL inactivation in gastrointestinal stromal tumors. Oncotarget 2016;7(6):6538–51. DOI: 10.18632/oncotarget.3731

86. Wang S., Sun R.Z., Han Q. et al. Genomic study of chinese quadruple-negative GISTs using next-generation sequencing technology. Appl Immunohistochem Mol Morphol 2021;29(1):34–41. DOI: 10.1097/PAI.0000000000000842

87. Debiec-Rychter M., Sciot R., Le Cesne A. et al. KIT mutations and dose selection for imatinib in patients with advanced gastrointestinal stromal tumors. Eur J Cancer 2006;42(8):1093–103. DOI: 10.1016/j.ejca.2006.01.030

88. Corless C.L., Ballman K.V., Antonescu C.R. et al. Pathologic and molecular features correlate with long-term outcome after adjuvant therapy of resected primary GI stromal tumor: the ACOSOG Z9001 trial. J Clin Oncol 2014;32(15):1563–70. DOI: 10.1200/JCO.2013.51.2046

89. Heinrich M.C., Maki R.G., Corless C.L. et al. Primary and secondary kinase genotypes correlate with the biological and clinical activity of sunitinib in imatinib-resistant gastrointestinal stromal tumor. J Clin Oncol 2008;26(33):5352–59. DOI: 10.1200/JCO.2007.15.7461

90. Ben-Ami E., Barysauskas C.M., von Mehren M. et al. Long-term follow-up results of the multicenter phase II trial of regorafenib in patients with metastatic and/or unresectable GI stromal tumor after failure of standard tyrosine kinase inhibitor therapy. Ann Oncol 2016;27(9):1794–9. DOI: 10.1093/annonc/mdw2289.

91. Vallilas C., Sarantis P., Kyriazoglou A. et al. Gastrointestinal stromal tumors (GISTs): novel therapeutic strategies with immunotherapy and small molecules. Int J Mol Sci 2021;22(2):493. DOI: 10.3390/ijms22020493

92. Бойчук С.В., Абдураева С.А., Копнин П.Б. Иммунотерапия гастроинтестинальных стромальных опухолей: состояние вопроса и перспективы. Успехи молекулярной онкологии 2023;10(2):17–29. DOI: 10.17650/2313-805X-2023-10-2-17-29

93. Yamaguchi U., Nakayama R., Honda K. et al. Distinct gene expression-defined classes of gastrointestinal stromal tumor. J Clin Oncol 2008;26(25):4100–8. DOI: 10.1200/JCO.2007.14.2331

94. Bertucci F., Finetti P., Mamessier E. et al. PD-L1 expression is an independent prognostic factor in localized GIST. Oncoimmunology 2015;4(5):e1002729. DOI: 10.1080/2162402X.2014.1002729

95. Fiorino E., Merlini A., D’Ambrosio L. et al. Integrated antitumor activities of cellular immunotherapy with CIK lymphocytes and interferons against KIT/PDGFRA wild type GIST. Int J Mol Sci 2022;23(18):10368. DOI: 10.3390/ijms231810368


Рецензия

Для цитирования:


Мазуренко Н.Н., Югай В.В., Цыганова И.В. Молекулярные особенности гастроинтестинальных стромальных опухолей «дикого типа» (KIT/PDGFRA WT). Успехи молекулярной онкологии. 2023;10(4):61-75. https://doi.org/10.17650/2313-805X-2023-10-4-61-75

For citation:


Mazurenko N.N., Yugay V.V., Tsyganova I.V. Molecular features of gastrointestinal stromal tumors “wild-type” (KIT/PDGFRA WT). Advances in Molecular Oncology. 2023;10(4):61-75. (In Russ.) https://doi.org/10.17650/2313-805X-2023-10-4-61-75

Просмотров: 565


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2313-805X (Print)
ISSN 2413-3787 (Online)